Information Transport in 2D and 3D Between Visual Media

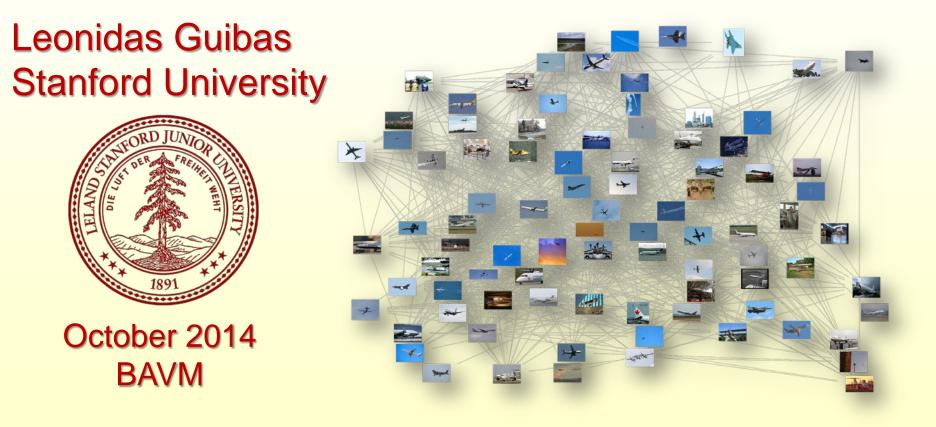
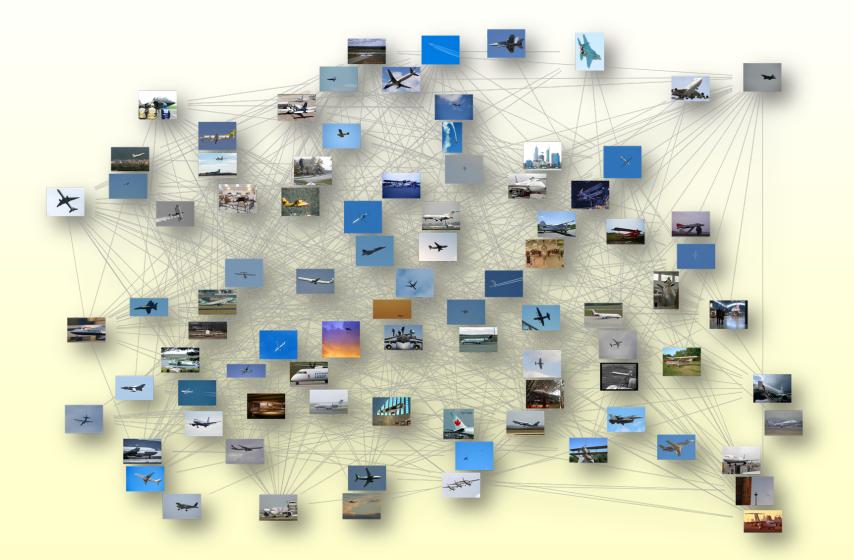
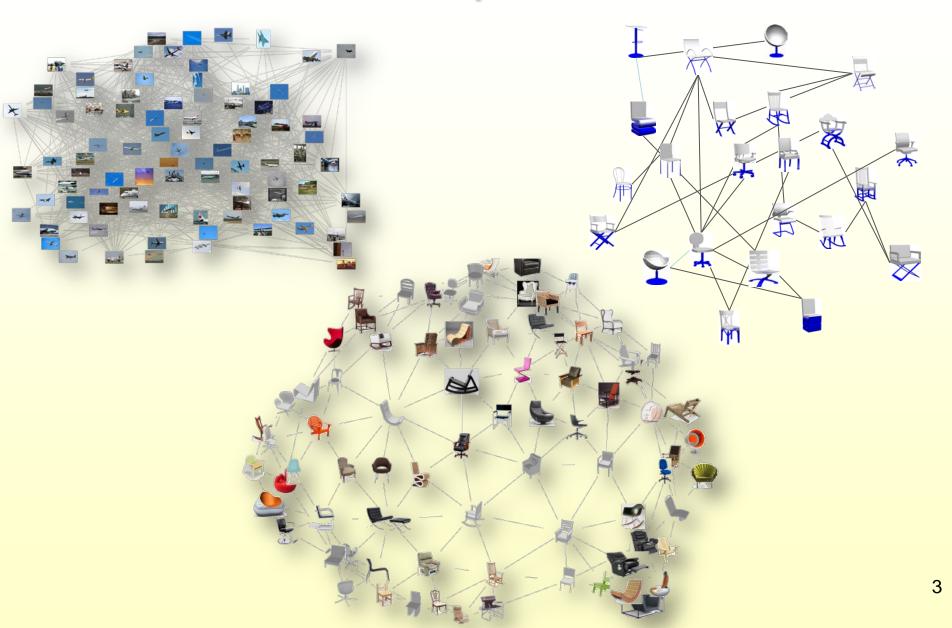


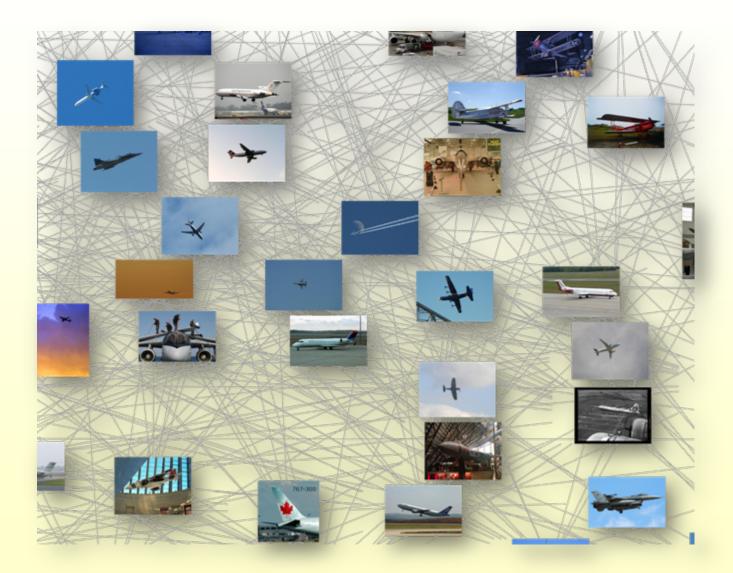
Image Networks

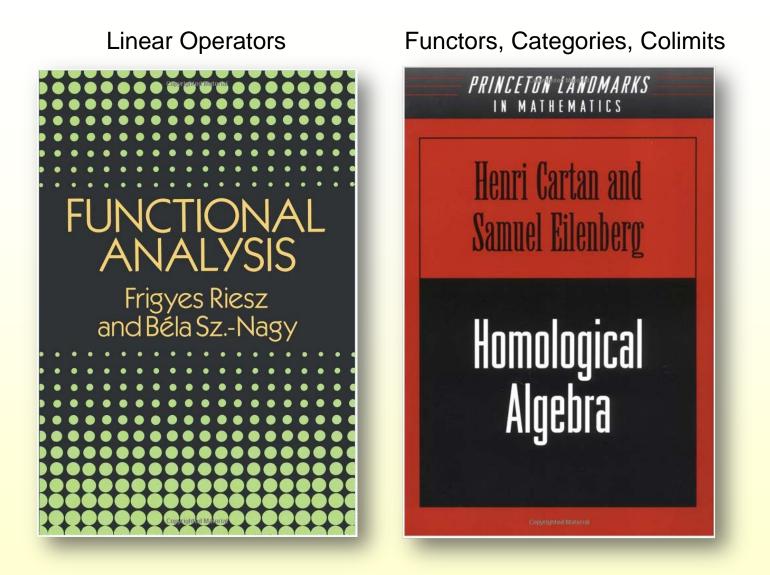


But also of Shapes, Mixed, Etc.



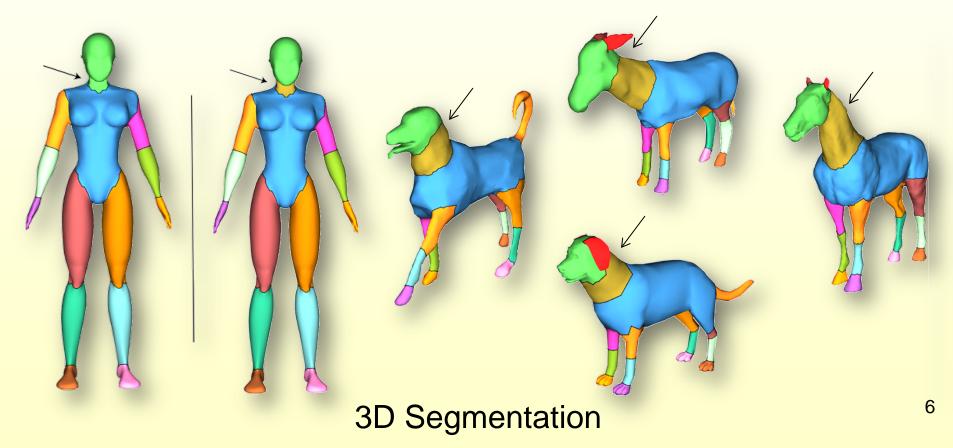
Relations Between Visual Data



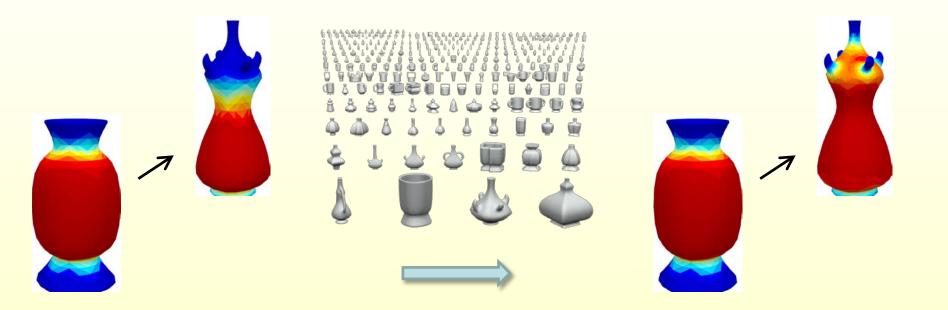


Each Data Set Is Not Alone

 The interpretation of a particular piece of geometric data is deeply influenced by our interpretation of other related data



And Each Data Set Relation is Not Alone



State of the art algorithm applied to the two vases

Map re-estimated using advice from the collection

3D Mapping

Societies, or Social Networks of Data Sets

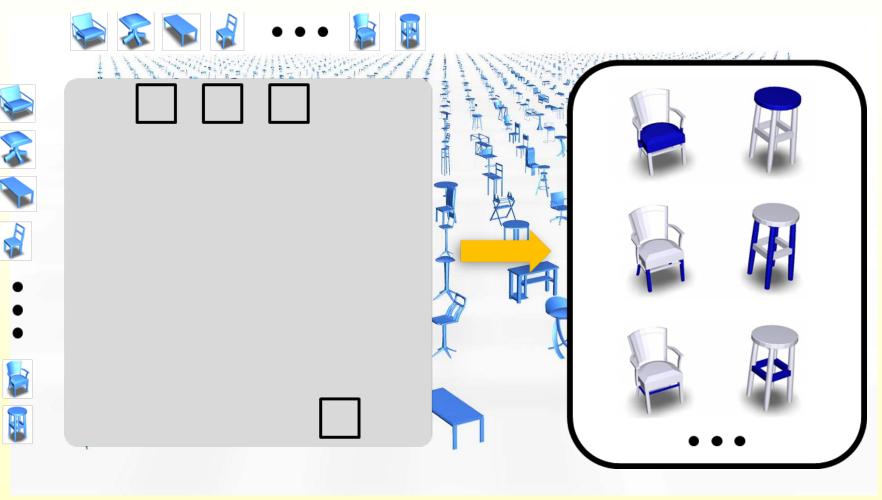
Our understanding of data can greatly benefit from extracting these relations and building relational networks.

We can exploit the relational network to

- transport information around the network
- assess the validity of operations or interpretations of data (by checking consistency against related data)
- assess the quality of the relations themselves (by checking consistency against other relations through cycle closure, etc.)

Thus the network becomes the great regularizer in joint data analysis.

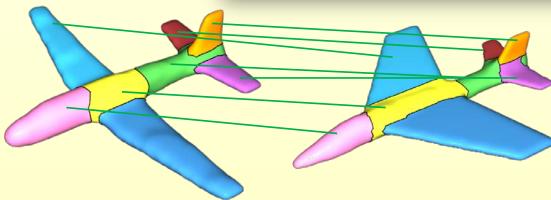
Semantic Structure Emerges from the Network



Key: Relationships as Collections of Correspondences or Maps

Multiscale mappings

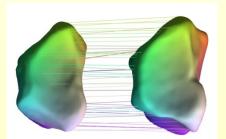
- Point/pixel level
- part level

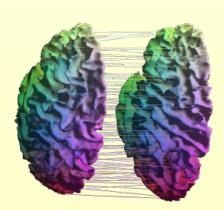


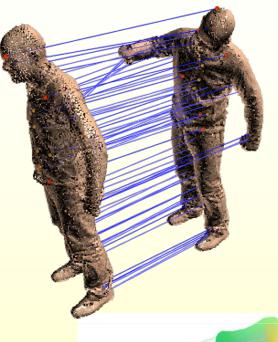
Maps capture what is the same or similar across two data sets

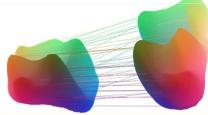
Relationships as First-Class Citizens

- How can we make data set relationships concrete, tangible, storable, searchable objects?
- How can we understand the "relationships among the relationships" or maps?

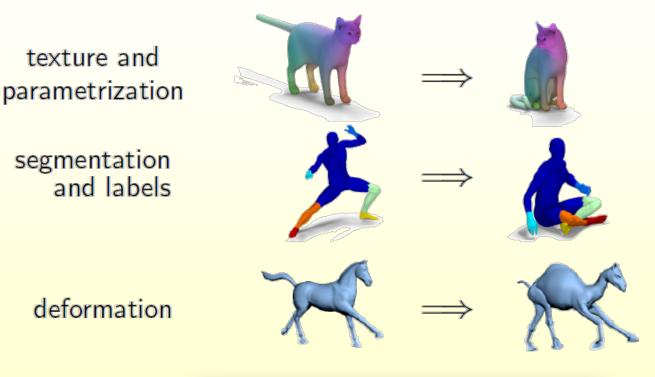








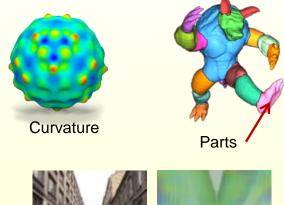
Good Correspondences or Maps are Information Transporters

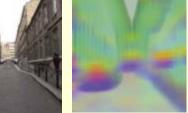


A Dual View: Functions and Operators

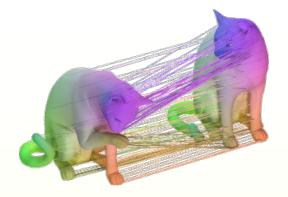
Functions on data

- Properties, attributes, descriptors, part indicators, etc.
- But also opinions, beliefs, etc
- Operators on functions
 - Maps of functions to functions



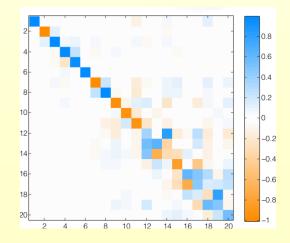


SIFT flow, C. Liu 2011

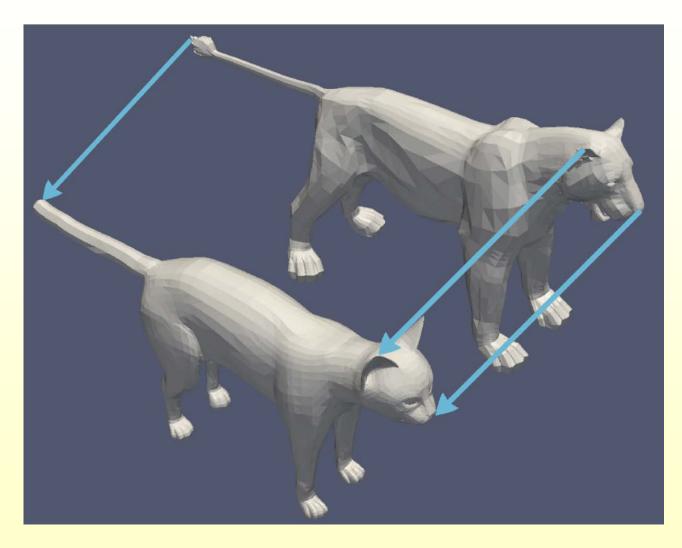


Functional Maps (a.k.a. Operators)

[M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, L. G., Siggraph '12]

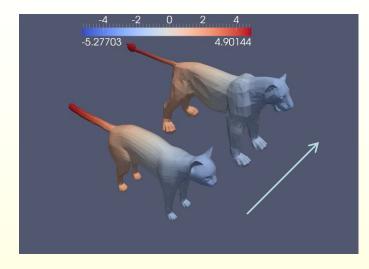


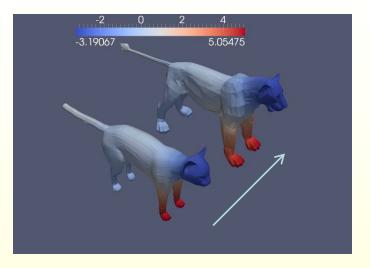
Starting from a Regular Map ϕ

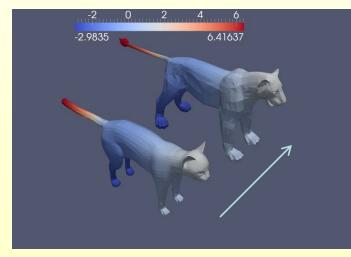


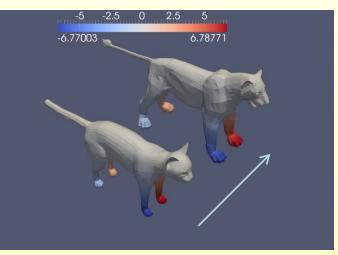
 φ : lion \rightarrow cat

Attribute Transfer via Pull-Back





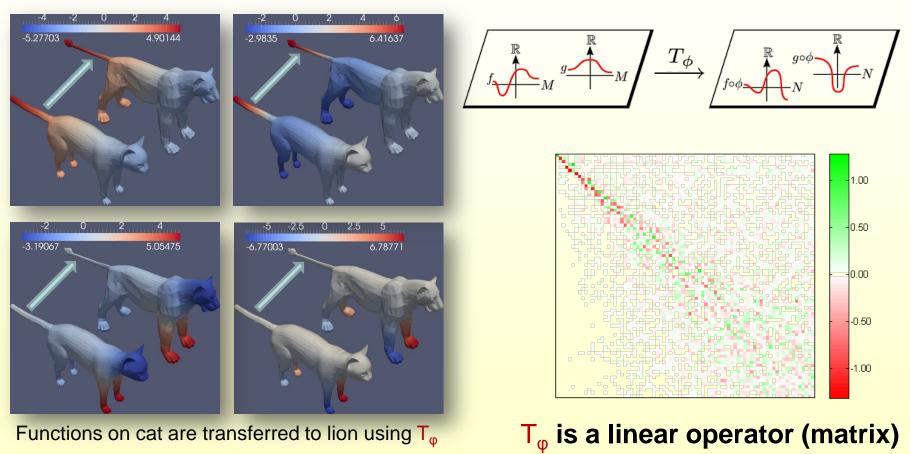




$$T_{\phi}$$
: cat \rightarrow lion

A Contravariant Functor

from cat to lion



 $T_{\phi}: L^2(cat) \to L^2(lion)$ 17

The Functional Framework

- An ordinary shape map lifts to a linear operator mapping the function spaces
- With a truncated hierarchical basis, compact representations of functional maps are possible as ordinary matrices
- Map composition becomes ordinary matrix multiplication
- Functional maps can express many-to-many associations, generalizing classical 1-1 maps



Using truncated Laplace-Beltrami basis

Estimating the Mapping Matrix

Suppose we don't know *C*. However, we expect a pair of functions $f: M \to \mathbb{R}$ and $g: N \to \mathbb{R}$ to correspond. Then, *C* must be s.t. $C\mathbf{a} \approx \mathbf{b}$

where $f = \sum_i \mathbf{a_i} \phi_i^M$, $g = \sum_i \mathbf{b}_i \phi_i^N$

Given enough $\{a_i, b_i\}$ pairs in correspondence, we can recover C through a linear least squares system.

Function Preservation Constraints

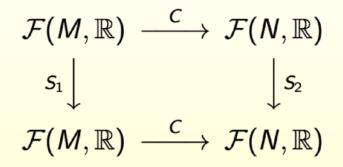
Suppose we don't know *C*. However, we expect a pair of functions $f: M \to \mathbb{R}$ and $g: N \to \mathbb{R}$ to correspond. Then, *C* must be s.t. $C\mathbf{a} \approx \mathbf{b}$

Function preservation constraint is quite general and includes:

- O Descriptor preservation (e.g. Gaussian curvature, spin images, HKS, WKS).
- Landmark correspondences (e.g. distance to the point).
- Part correspondences (e.g. indicator function).
- Texture preservation

Commutativity Constraints

In addition, we can phrase operator commutativity constraint, given two operators $S_1 : \mathcal{F}(M, \mathbb{R}) \to \mathcal{F}(M, \mathbb{R})$ and $S_2 : \mathcal{F}(N, \mathbb{R}) \to \mathcal{F}(N, \mathbb{R})$.



Thus: $CS_1 = S_2C$ or $||CS_1 - S_2C||$ should be minimized

Note: this is a linear constraint on C. S_1 and S_2 could be symmetry operators or e.g. Laplace-Beltrami or Heat operators.

Regularization

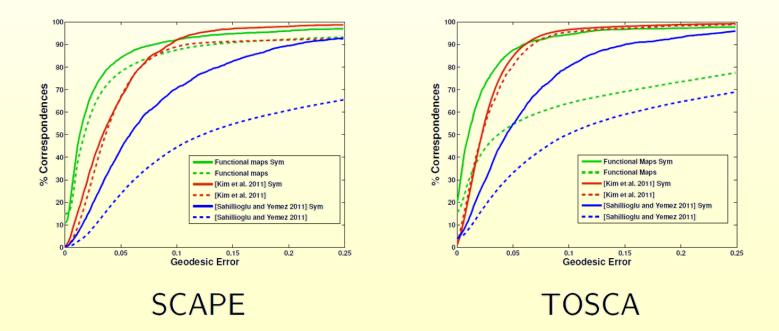
Lemma 1:

The mapping is *isometric*, if and only if the functional map matrix commutes with the Laplacian:

$C\Delta_1 = \Delta_2 C$

Map Estimation Quality

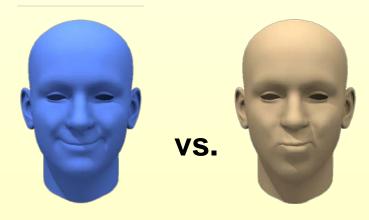
A very simple method that puts together a modest set of constraints and uses 100 basis functions outperforms state-of-the-art:



Roughly 10 probe functions + 1 part correspondence

App: Shape Differences

[R. Rustamov, M. Ovsjanikov, O. Azercot, M. Ben-Chen, F. Chazal, L.G. Siggraph '13]



A Functional View of Distortions

To measure distortions induced by a map, track how inner products of vectors change after transporting.

To measure distortions induced by a map, track how inner products of functions change after transporting.

Riemann

The Art of Measurement

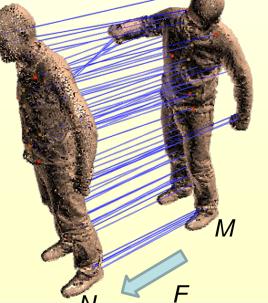
• A metric is defined by a functional inner product

$$h^M(f,g) = \int_M f(x)g(x)d\mu(x)$$

So we can compare M and N by comparing

 $h^N(F(f), F(g))$

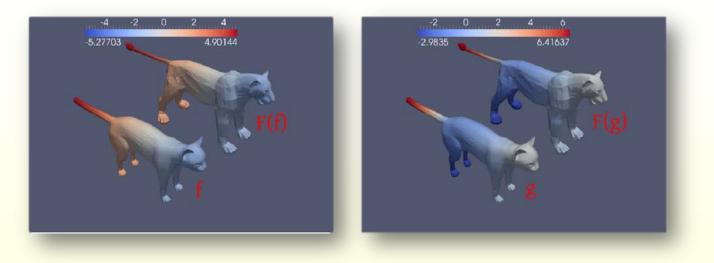
The functional map *F* transports these functions to *N*, where we repeat this measurement with the inner product $h^{N}(F(f),F(g))$



Riemann

 $h^M(f,g)$

Measurement Discrepancies

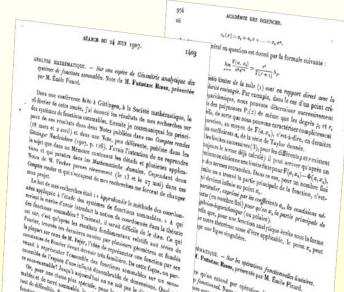


 $\int_{lion} F(f)F(g) \, d\mu_l \neq \int_{cat} fg \, d\mu_c$ after before

Both can be considered as inner products on the cat

The Universal Compensator

Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences de Paris



A respect o une remain memorane ou communication setable? Justo'i anjourd'hai oa ne sait pa je dire. detentable? Javoja apparatos ca ne sar pas se care, 5 por une cisse pius speciale, pour lo systeme des fonctions soci-to a secondaria de la secondaria de la

1907

jo des reatements de possions, tacorie qui ressemblie à la sigue D'autre part, la notion de distance peut aussi dere fari, la sossoa de ansance pros suns erro pour un sous-cascable de points de aoire

Anness in Annesses ou proposano su comporte Pilos a ceste classe, il etisto su lien pilos interne entre la e anno su compostato de la compostato de la

itustique. - Sur le opérasions fonctionnelles linéaires. fautrice. - Sur er gerusses Jonssonnesses anno 4. Pandase Rass, présentée par M. Émile Picud. do, ou cutud but objection lin danad. Nots considerous la totalité Q des for s coire dess nombres fires, for exempti the des $f_i(x)$, $A(f_i)$ lend vers $A(f_i)$. e est dite linéaire. On avontre 1909" Lette and

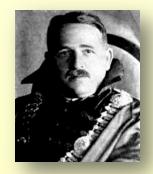
Riesz Representation Theorem

There exists a linear operator

$$V: L^2(cat) \to L^2(cat)$$

such that

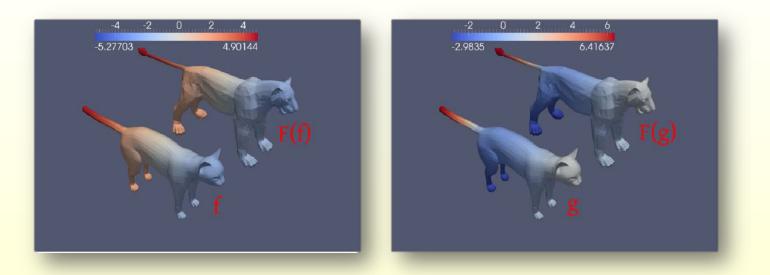
 $\langle f, g \rangle_{\text{after}} = \langle f, V(g) \rangle_{\text{before}}$



Frigyes Riesz

28

Area-Based Shape Difference: $V \approx F^T F$

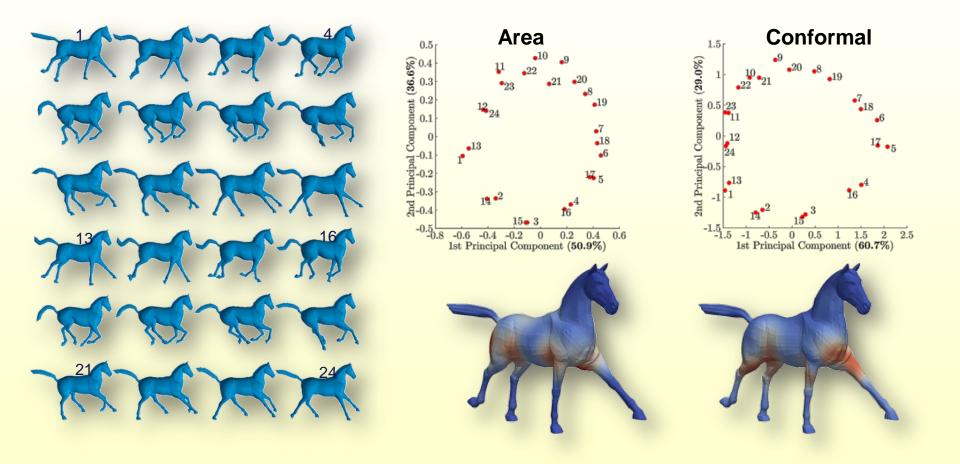


$$\int_{lion} F(f)F(g) \neq \int_{cat} fg$$

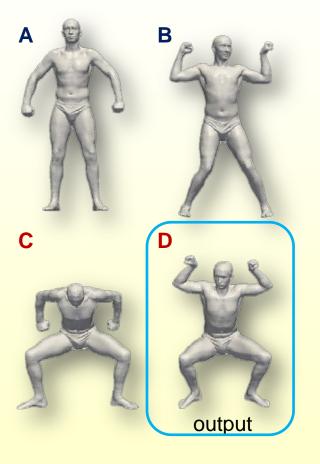
$$\int_{lion} F(f)F(g) = \int_{cat} fV(g)$$

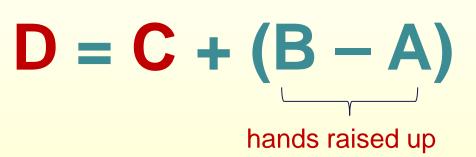
29

Intrinsic Shape Space

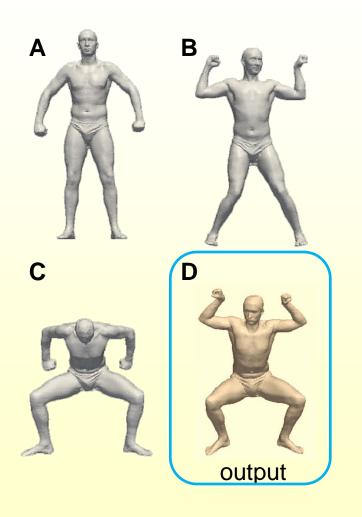


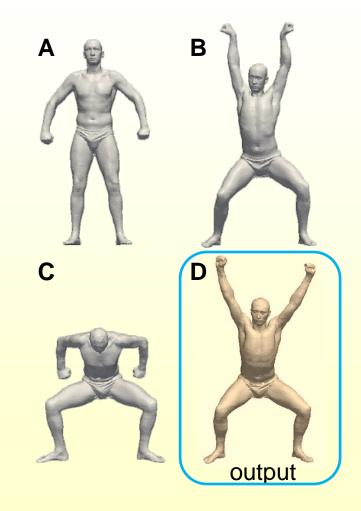
Analogies: D relates to C as B relates to A





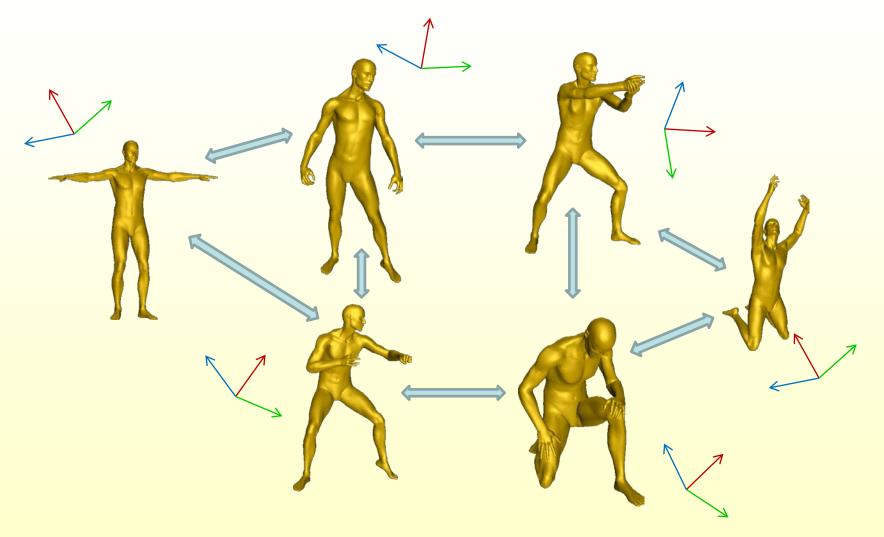
Shape Analogies





The Network View

Map Networks for Related Data



Networks of "samenesses"

A Functorial View $O^{EMINARS}$ bata summand of A. In this case, there exist here exi

Herni Cartan

Saunders MacLane

Samuel Eilenberg

The Information is in the Maps

summand of A. In this case, there exist homomorphisms $A'' \to A \to A'$ which together with the homomorphisms $A' \rightarrow A \rightarrow A''$ yield a direct sum representation of A. Let F be a module and X a subset of F. We shall say that F is free with X as base if every $x \in F$ can be written uniquely as a finite sum $\sum \lambda_i x_i, \lambda_i \in \Lambda, x_i \in X$. If X is any set we may define F_X as the set of all formal finite sums $\sum \lambda_i x_i$. If we identify $x \in X$ with $1x \in F_X$, then F_X is In particular, if A is a module we may consider F_A . The identity mapping of the base of F_A onto A extends then to a homomorphism $F_A \rightarrow A$. If R_A denotes the kernel of this homomorphism, we obtain $0 \to R_A \to F_A \to A \to 0.$ A diagram of modules and homomorphisms, is said to be commutative if the comof modules and noncomprising, is said to be commutative in the control positions $A \to B \to D$ and $A \to C \to D$ coincide. Similarly the diagram is commutative, if $A \rightarrow B \rightarrow C$ coincides with $A \rightarrow C$. $\begin{array}{c} \text{commutative, if } A \to B \to \mathbb{C} \text{ coincides with } A \to \mathbb{C}, \\ \text{We shall have occasion to consider larger diagrams involving several} \\ \text{onvaries and triangles} \quad W_{a \ chall \ eav \ that \ einch \ a \ diagrams \ ic \ commutative} \end{array}$ we shall have occasion to consider larger diagrams involving several squares and triangles. We shall say that such a diagram is commutative, if each commonant contare and triangle is commutative. each component square and triangle is commutative. PROPOSITION 1.1. (The ''5 lemma''). Consider a commutative diagram with exact rows. (1) Coker $h_2 = 0$, Ker $h_1 = 0$, Ker $h_{-1} = 0$, then Ker $h_0 = 0$. If Homological Algebra (2) Coker $h_1 = 0$, Coker $h_{-1} = 0$, $K_{n_1} = 0$ then $Coker h_0 = 0$ 35 1956

Yes, But With a Statistical Flavor

- Yes, straight out of the playbook of homological algebra / algebraic topology
- But, the maps
 - are not given by canonical constructions
 - they have to be estimated and can be noisy
 - the network acts as a regularizer ...
 - commutativity still very important
 - imperfections of commutativity in function transport convey valuable information: consistency vs. variability – "curvature" in shape/image space

Cycle-Consistency Low-Rank

 In a map network, commutativity, path-invariance, or cycle-consistency are equivalent to a low rank or semidefiniteness condition on a big mapping matrix

$$X = \begin{pmatrix} I_m & X_{1,2} & \cdots & X_{1,n} \\ X_{1,2} & I_m & \cdots & \cdots \\ \vdots & \vdots & I_m & X_{(n-1),n} \\ X_{n,1} & \vdots & X_{n,(n-1)} & I_m \end{pmatrix}$$

 Conversely, such a low-rank condition can be used to regularize functional maps

Shared Structure Discovery

Entity Extraction in Images

[F. Wang, Q. Huang, L. G., ICCV '13]

Task: jointly segment a set of related images
 same object, different viewpoints/scales:

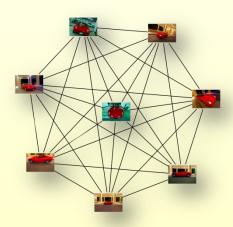
similar objects of the same class:

Benefits and challenges:

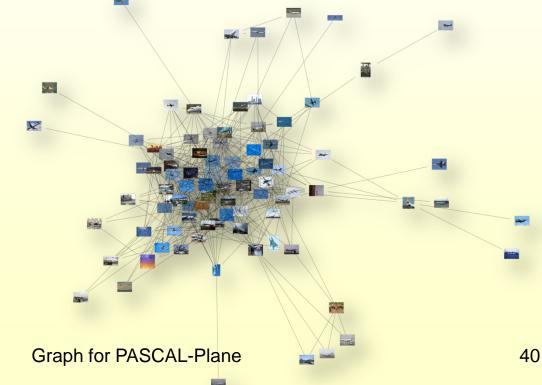
- Images can provide weak supervision for each other
- But exactly how should they help each other? How to deal with clutter and irrelevant content?

Co-Segmentation via an Image Network

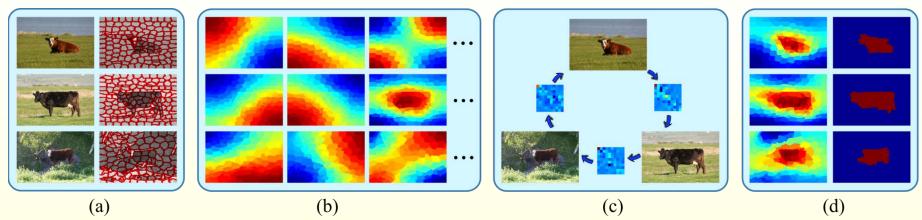
- Image similarity graph based on GIST
 - Each edge has global image similarity w_{ij} and functional maps in both directions;
 - Sparse if large.



Graph for iCoseg-Ferrari



The Pipeline

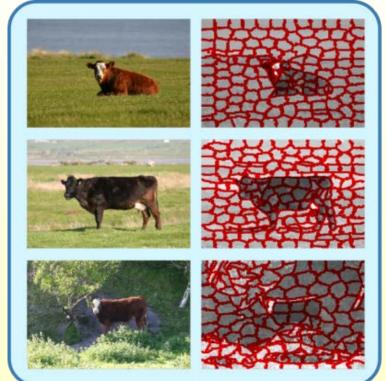


- a) Superpixel graph representation of images
- b) Functions over these graphs expressed in terms of the eigenvectors of the graph Laplacian
- c) Estimation of functional maps along network edges such that
 - Image features are preserved
 - Maps are cycle consistent in the network
- d) The "cow functions" emerge as the most consistently transported set ⁴¹

Superpixel Representation

Over-segment images into super-pixels

- Build a graph on superpixels
 - Nodes: super-pixels
 - Edges weighted by length of shared boundary



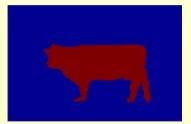
Encoding Functions over Graphs

Basis of functional space

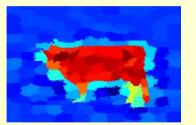
First M Laplacian
 eigenfunctions of the graph

$$f = \sum_{j=1}^{M} f_j b_i^j = B_i \mathbf{f}$$

Reconstruct any function with small error (M=30)

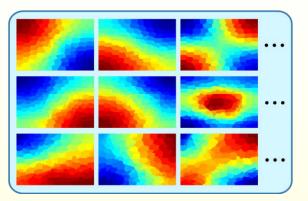


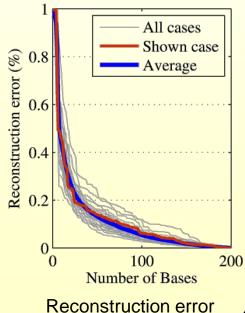
Binary indicator function



Reconstructed function

Thresholded reconstructed function





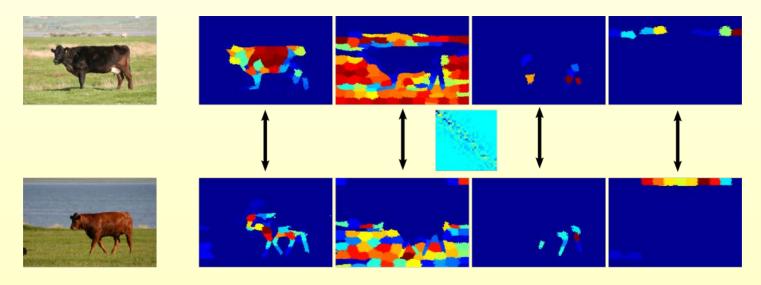
Joint Estimation of Functional Maps,

Functional map:

A linear map between functions in two functional spaces

$$\mathbf{f}' = X_{ij}\mathbf{f} \quad X_{ij} \in \mathcal{R}^{M \times M}$$

Can be recovered by a set of probe functions



Joint Estimation of Functional Maps,

• Recover functional maps by aligning image features: $f_{ij}^{\text{feature}} = \|X_{ij}D_i - D_j\|_1$

Features (probe functions) for each super-pixel:

- average RGB color, 3-dimensional;
- 64 dimensional RGB color histogram;
- 300-dimensional bag-of-visual-words.

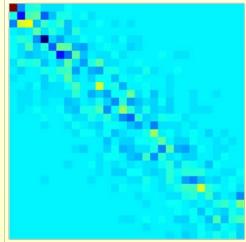
Joint Estimation of Functional Maps, II

Regularization term:

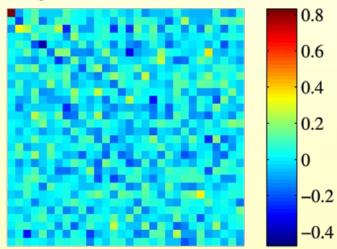
 Λ_{i} , Λ_{j} diagonal matrices of Laplacian eigenvalues

$$f_{ij}^{\text{reg}} = \|X_{ij}\Lambda_i - \Lambda_j X_{ij}\|^2$$

Correspond bases of similar spectra
Enforce sparsity of map



Map with regularization



Map without regularization

Joint Estimation of Functional Maps, III

Incorporating map cycle consistency:

 A transported function along any loop should be identical to the original function:

$$X_{i_k i_0} \cdots X_{i_1 i_2} X_{i_0 i_1} \mathbf{f} = \mathbf{f} \quad \bigstar \quad X_{i_j} Y_i = Y_j, \quad \forall (i,j) \in \mathcal{G}$$

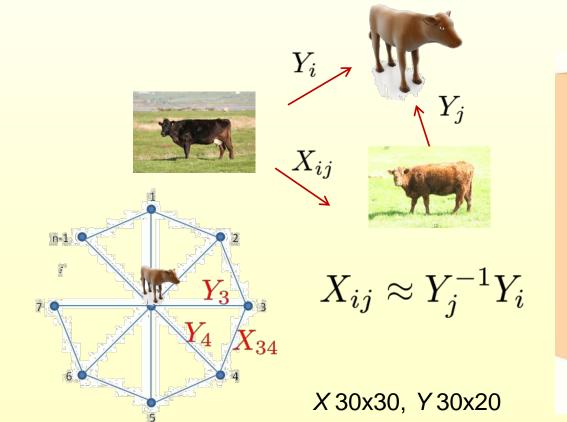
Consistency term:

$$f^{\text{cons}} = \sum_{(i,j)\in\mathcal{G}} w_{ij} f_{ij}^{\text{cons}} = \sum_{(i,j)\in\mathcal{G}} w_{ij} \|X_{ij}Y_i - Y_j\|_{\mathcal{F}}^2$$

Image global similarity weight via GIST

Joint Estimation of Functional Maps, III

Plato's allegory of the cave



Joint Estimation of Functional Maps, IV

Overall optimization

$$\min \sum_{(i,j)\in\mathcal{G}} w_{ij} \left(f_{ij}^{\text{feature}} + \mu f_{ij}^{\text{reg}} + \lambda f_{ij}^{\text{cons}} \right)$$
$$s.t. \quad Y^T Y = I_m$$

• Alternating optimization: • Fix Y, solve X \implies Independent QP problems $X_{ij}^{\star} = \arg \min_X \left(f_{ij}^{\text{feature}} + \mu f_{ij}^{\text{reg}} + \lambda f_{ij}^{\text{cons}} \right)$ • Fix X, solve Y \implies Eigenvalue problem $\min_x \operatorname{trace}(Y^TWY)$ $s.t. Y^TY = I_m$ $W_{ij} = \begin{cases} \sum_{\substack{(i,j') \in \mathcal{G} \\ 0 & \text{otherwise}}} W_{ij} = \begin{cases} \sum_{\substack{(i,j') \in \mathcal{G} \\ 0 & \text{otherwise}}} W_{ij} \in \mathcal{G} \\ 0 & \text{otherwise}} \end{cases}$

Consistency Matters

Source image

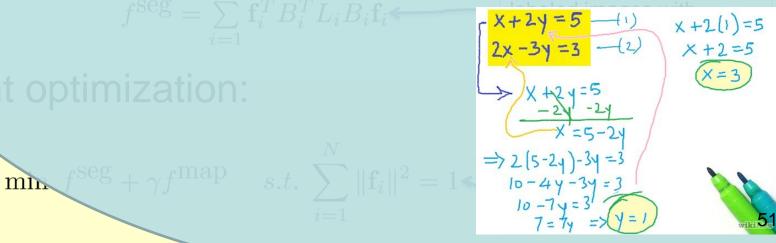
Generating Consistent Segmentations

Two objectives for segmentation functions

consistent under functional map transpress

We look for network fixed points!

Voint optimization:



Experiments

iCoseg dataset

- Very similar or the same object in each class;
- 5~10 images per class.

MSRC dataset

- Similar objects in each class;
- ~30 images per class.
- PASCAL data set
 - Retrieved from PASCAL VOC 2012 challenge;
 - All images with the same object label;
 - Larger scale;
 - Larger variability.

iCoseg data set

New unsupervised method

- Mostly outperforms other unsupervised methods
- Sometimes even outperforms supervised methods
- Supervised input is easily added and further improves the results

Kuettel'12 (Su	Unsupervised Fmaps	
Image+transfer	Full model	ГПарз
87.6	91.4	90.5

			Ų	
Class	Joulin '10	Rubio '12	Vicente '11	Fmaps -uns
Alaska Bear	74.8	86.4	90.0	90.4
Red Sox Players	73.0	90.5	90.9	94.2
Stonehenge1	56.6	87.3	63.3	92.5
Stonehenge2	86.0	88.4	88.8	87.2
Liverpool FC	76.4	82.6	87.5	89.4
Ferrari	85.0	84.3	89.9	95.6
Taj Mahal	73.7	88.7	91.1	92.6
Elephants	70.1	75.0	43.1	86.7
Pandas	84.0	60.0	92.7	88.6
Kite	87.0	89.8	90.3	93.9
Kite panda	73.2	78.3	90.2	93.1
Gymnastics	90.9	87.1	91.7	90.4
Skating	82.1	76.8	77.5	78.7
Hot Balloons	85.2	89.0	90.1	90.4
Liberty Statue	90.6	91.6	93.8	96.8
Brown Bear	74.0	80.4	95.3	88.1
Average	78.9	83.5	85.4	90.5 3

Supervised

method

PASCAL

Unsupervised performance comparison

Class	Ν	Joulin '10	Rubio '12	Fmaps -uns
Cow	30	81.6	80.1	89.7
Plane	30	73.8	77.0	87.3
Face	30	84.3	76.3	89.3
Cat	24	74.4	77.1	88.3
Car(front)	6	87.6	65.9	87.3
Car(back)	6	85.1	52.4	92.7
Bike	30	63.3	62.4	74.8

Supervised performance comparison

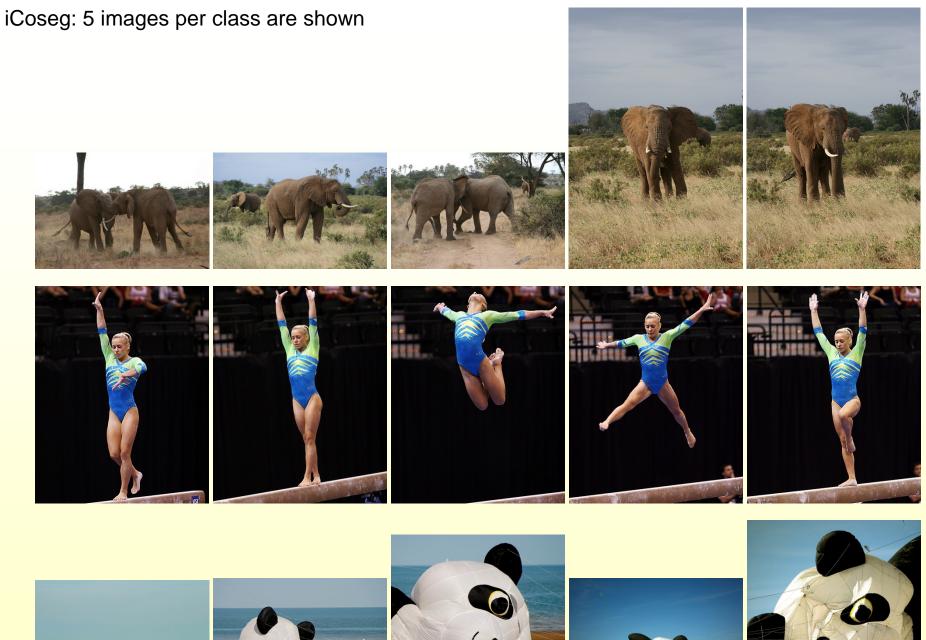
Class	Vicente '11	Kuettel '12	Fmaps -s
Cow	94.2	92.5	94.3
Plane	83.0	86.5	91.0
Car	79.6	88.8	83.1
Sheep	94.0	91.8	95.6
Bird	95.3	93.4	95.8
Cat	92.3	92.6	94.5
Dog	93.0	87.8	91.3

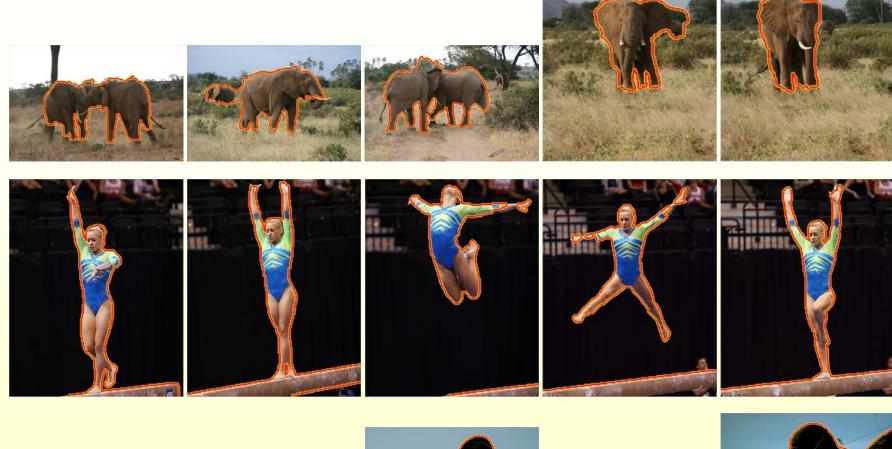
Class	N	L	Kuettel '12	Fmaps -s	Fmaps -uns
Plane	178	88	90.7	92.1	89.4
Bus	152	78	81.6	87.1	80.7
Car	255	128	76.1	90.9	82.3
Cat	250	131	77.7	85.5	82.5
Cow	135	64	82.5	87.7	85.5
Dog	249	121	81.9	88.5	84.2
Horse	147	68	83.1	88.9	87.0
Sheep	120	63	83.9	89.6	86.5

 New method mostly outperforms the state-ofthe-art techniques in both supervised and unsupervised settings

iCoseg: 5 images per class are shown

iCoseg: 5 images per class are shown

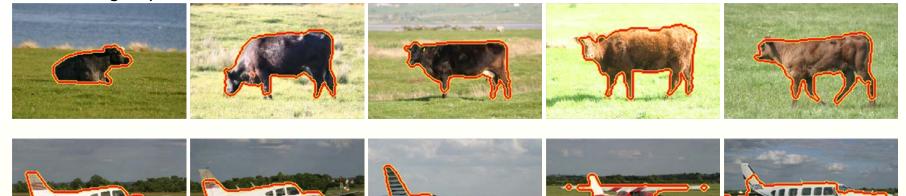




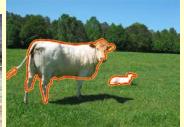
MSRC: 5 images per class are shown

59

MSRC: 5 images per class are shown



1400000



Multi-Class Co-Segmentation

[F. Wang, Q. Huang, M. Ovsjanikov, L. G., CVPR'14]

Input:

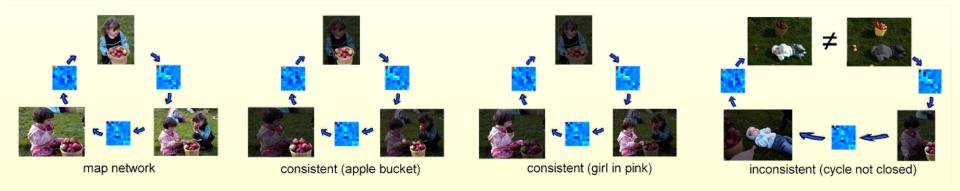
- A collection of N images sharing M objects
- Each image contains a subset of the objects

Output

- Discovery of what objects appear in each image
- Their pixel-level segmentation

Consistent Functional Maps

Partial cycle consistency:



Must deal with non-total maps

Related to topological persistence / persistent homology

Consistent Functional Maps

Latent functions: Y_i = (y_{i1}, ..., y_{iL})
Discrete variables: z_i = {z_{il} ∈ {0, 1}, 1 ≤ l ≤ L}
Relationship: Y_iDiag(z_i) = Y_i
Consistency:

 $X_{ij}Y_i = Y_j \text{Diag}(z_i), \quad (i,j) \in \mathcal{E}.$

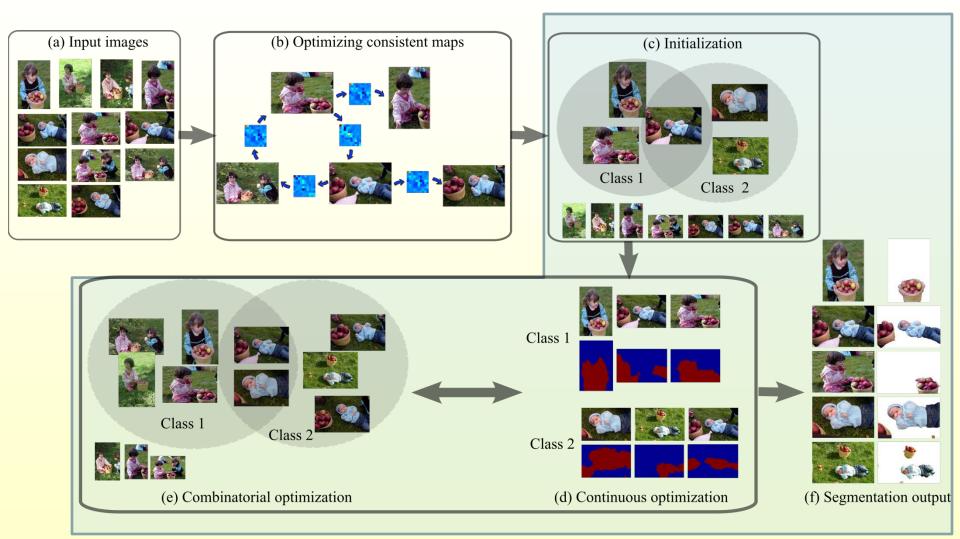
Consistent Functional Maps

The consistency regularization

$$f_{\text{cons}} = \mu \sum_{(i,j)\in\mathcal{E}} \|\mathbf{X}_{ij}\mathbf{Y}_i - \mathbf{Y}_j \text{Diag}(\boldsymbol{z}_i)\|^2 + \gamma \sum_{i=1}^N \|\mathbf{Y}_i - \mathbf{Y}_i \text{Diag}(\boldsymbol{z}_i)\|^2,$$

• Overall optimization $\{X_{ij}^{\star}\} = \operatorname{argmin}_{X_{ij}} \left(\mu f_{\operatorname{cons}} + \sum_{(i,j) \in \mathcal{E}} f_{\operatorname{pair}} \right)$

Framework



Initialization

 Solve for consistent segmentation with ALL images together

$$f_{seg} = \frac{1}{|\mathcal{G}|} \sum_{(i,j)\in\mathcal{G}} \|X_{ij}s_{ik} - s_{jk}\|_F^2 + \frac{\gamma}{N} \sum_{i=1}^N s_{ik}^T L_i s_{ik}$$
$$= s_k \overline{L} s_k,$$

Pick the first M eigenvectors
Each object class is initialized as:

$$C_k = \{i, \text{ s.t. } \|s_{ik}\| \ge \max_i \|s_i\|/2\}$$

Optimizing Segmentation Functions

Alternating between:

- Continuous optimization:
 - Optimal segmentation functions in each class
- Combinatorial optimization:
 - Class assignment by propagating segmentation functions

Continuous Optimization

• Optimize segmentations in each object class • Consistent with functional maps • Align with segmentation cues • Mutually exclusive $\min_{a} \sum_{i=1}^{M} \sum_{j=1}^{N} ||X_{ij}s_{ik} - s_{jk}||^{2}$

$$\begin{split} \min_{s_{ik},i\in\mathcal{C}_{k}} & \sum_{k=1}^{\sum} \sum_{(i,j)\in\mathcal{E}\cap(\mathcal{C}_{k}\times\mathcal{C}_{k})} \|X_{ij}s_{ik}-s_{jk}\|^{2} \\ &+ \gamma \sum_{l\neq k} \sum_{i\in\mathcal{C}_{k}\cap\mathcal{C}_{l}} (s_{il}^{T}s_{ik})^{2} + \mu \sum_{k=1}^{M} \sum_{i\in\mathcal{C}_{k}} s_{ik}^{T}L_{i}s_{ik} \\ \text{subject to} & \sum_{i\in\mathcal{C}_{k}} \|s_{ik}\|^{2} = |\mathcal{C}_{k}|, \quad 1 \leq k \leq K. \end{split}$$

Combinatorial Optimization

Expand each object class by propagating segmentations to other images

$$\begin{array}{ll} \max_{s_{ik}} & \frac{1}{|\mathcal{N}(i) \cap \mathcal{C}_k|} \sum_{j \in \mathcal{N}(i) \cap \mathcal{C}_k} (s_{ik}^T X_{ji} s_{jk})^2 \\ & -\gamma \sum_{l \neq k, i \in \mathcal{C}_l} (s_{ik}^T s_{il})^2 - \mu s_{ik}^T L_i s_{ik} \end{array}$$
bject to $\|s_{ik}\|^2 = 1$

SU

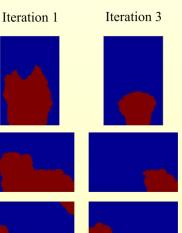
Optimizing Segmentation Functions

More images will be included in each

object class

Iteration 2

 Segmentation functions are improved during iterations



Iteration 3

Experimental Results

Accuracy

- Intersection-over-union
- Find the best one-to-one matching between each cluster and each ground-truth object.
- Benchmark datasets
 - MSRC: 30 images, 1 class (degenerated case);
 - FlickrMFC data set: 20 images, 3~6 classes
 - PASCAL VOC: 100~200 images, 2 classes

Experimental Results

class	Ν	М	Kim'12	Kim'11	Joulin '10	Mukherjee '11	Ours
Apple	20	6	40.9	32.6	24.8	25.6	46.6
Baseball	18	5	31.0	31.3	19.2	16.1	50.3
butterfly	18	8	29.8	32.4	29.5	10.7	54.7
Cheetah	20	5	32.1	40.1	50.9	41.9	62.1
Cow	20	5	35.6	43.8	25.0	27.2	38.5
Dog	20	4	34.5	35.0	32.0	30.6	53.8
Dolphin	18	3	34.0	47.4	37.2	30.1	61.2
Fishing	18	5	20.3	27.2	19.8	18.3	46.8
Gorilla	18	4	41.0	38.8	41.1	28.1	47.8
Liberty	18	4	31.5	41.2	44.6	32.1	58.2
Parrot	18	5	29.9	36.5	35.0	26.6	54.1
Stonehenge	20	5	35.3	49.3	47.0	32.6	54.6
Swan	20	3	17.1	18.4	14.3	16.3	46.5
Thinker	17	4	25.6	34.4	27.6	15.7	68.6
Average	-	-	31.3	36.3	32.0	25.1	53.1

Performance comparison on the MFCFlickr dataset

class	Ν	Joulin'10	Kim'11	Mukherjee'11	Ours
Bike	30	43.3	29.9	42.8	51.2
Bird	30	47.7	29.9	-	55.7
Car	30	59.7	37.1	52.5	72.9
Cat	24	31.9	24.4	5.6	65.9
Chair	30	39.6	28.7	39.4	46.5
Cow	30	52.7	33.5	26.1	68.4
Dog	30	41.8	33.0	-	55.8
Face	30	70.0	33.2	40.8	60.9
Flower	30	51.9	40.2	-	67.2
House	30	51.0	32.2	66.4	56.6
Plane	30	21.6	25.1	33.4	52.2
Sheep	30	66.3	60.8	45.7	72.2
Sign	30	58.9	43.2	-	59.1
Tree	30	67.0	61.2	55.9	62.0

Performance comparison on the MSRC dataset

class	Ν	NCut	MNcut	Ours
Bike + person	248	27.3	30.5	40.1
Boat + person	260	29.3	32.6	44.6
Bottle + dining table	90	37.8	39.5	47.6
Bus + car	195	36.3	39.4	49.2
bus + person	243	38.9	41.3	55.5
Chair + dining table	134	32.3	30.8	40.3
Chair + potted plant	115	19.7	19.7	22.3
Cow + person	263	30.5	33.5	45.0
Dog + sofa	217	44.6	42.2	49.6
Horse + person	276	27.3	30.8	42.1
Potted plant + sofa	119	37.4	37.5	40.7

Performance comparison on the PASCAL-multi dataset

Apple + picking

Baseball + kids

Butterfly + blossom

Apple + picking (red: apple bucket; magenta: girl in red; yellow: girl in blue; green: baby; cyan: pum

Baseball + kids (green: boy in black; blue: boy in grey; yellow: coach.)

Butterfly + blossom (green: butterfly in orange; yellow: butterfly in yellow; cyan: red flowe

Cheetah + Safari

Cow + pasture

Dog + park

Dolphin + aquarium

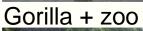
Cheetah + Safari (red: cheetah; yellow: lion; magenta: monkey.)

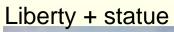
Cow + pasture (red: black cow; green: brown cow; blue: man in blue.)

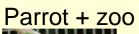
Dog + park (red: black dog; green: brown dog; blue: white dog.)

Dolphin + aquarium (red: killer whale; green: dolphin.)

Fishing + Alaska







Fishing + Alaska (blue: man in white; green: man in gray; magenta: woman in gray; yellow: salmon.

Liberty + statue (blue: empire state building; green: red boat; yellow: liberty state

Parrot + zoo (red: hand; green: parrot in green; blue: parrot in red.)

Stonehenge

Swan + zoo

Thinker + Rodin

Stonehenge (blue: cow in white; yellow: person; magenta: stonehenge.)

Swan + zoo (blue: gray swan; green: black swan.)

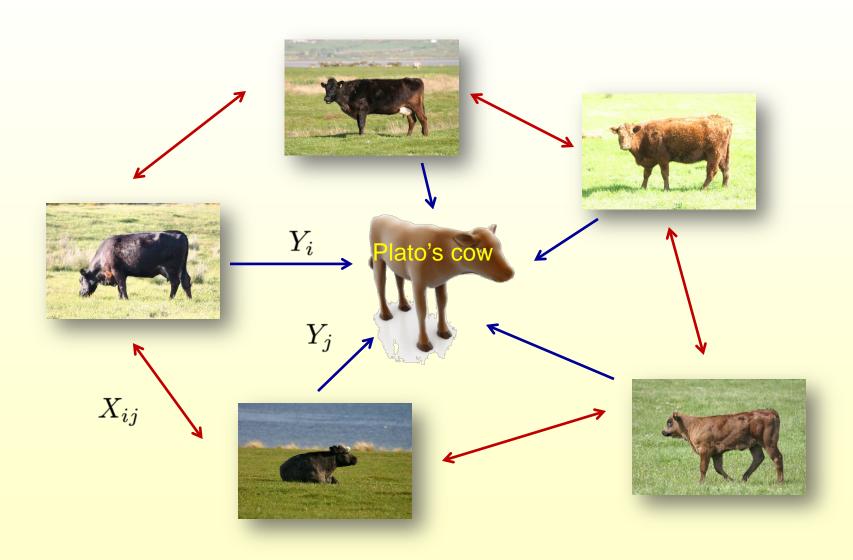
Thinker + Rodin (red: sculpture Thinker; green: sculpture Venus; blue: Van Gogh.)

Apple + picking (red: apple bucket; magenta: girl in red; yellow: girl in blue; green: baby; cyan: pum

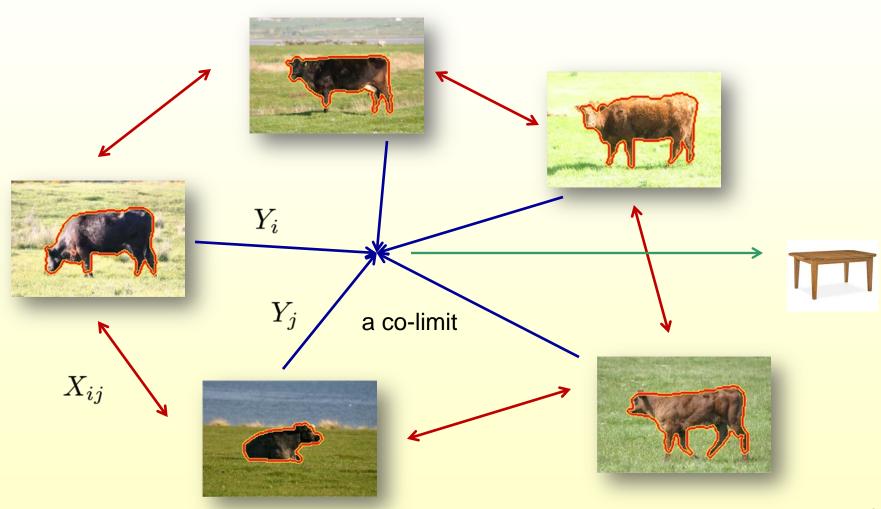
Baseball + kids (green: boy in black; blue: boy in grey; yellow: coach.)

Butterfly + blossom (green: butterfly in orange; yellow: butterfly in yellow; cyan: red flowe

The Network is the Abstraction



The Network is the Abstraction



Mosaicing or SLAM at the Level of Functions

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f08/www/proj4/www/gme/

robotics.ait.kyushu-u.ac.jp

Networks of Shapes and Images

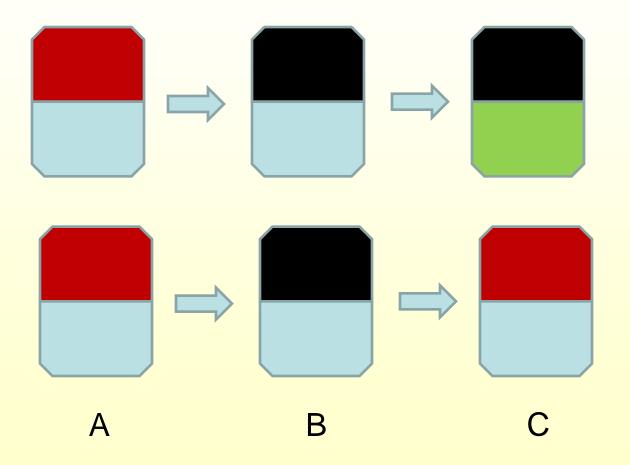
Depth Inference from a Single Image

single image

shape network

inferred depth

Maps vs. Distances/Similarities Networks vs. Graphs



Conclusion: Functoriality

Classical "vertical" view of data analysis:

Signals to symbols

from features, to parts, to semantics ...

 A new "horizontal" view based on peer-topeer signal relationships
 so that semantics emerge from the network

Acknowledgements

Collaborators:

- Current students: Justin Solomon, Fan Wang
- Current and past postdocs: Adrian Butscher, Qixing Huang, Raif Rustamov
- Senior: Mirela Ben-Chen, Frederic Chazal, Maks Ovsjanikov

Microsoft Goog

Connecting People

Sponsors:

National Science Foundation

Office of Naval Research

