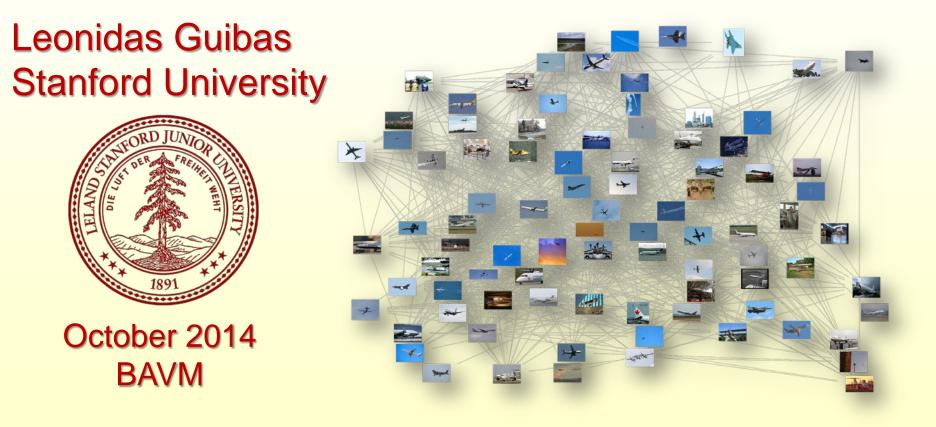
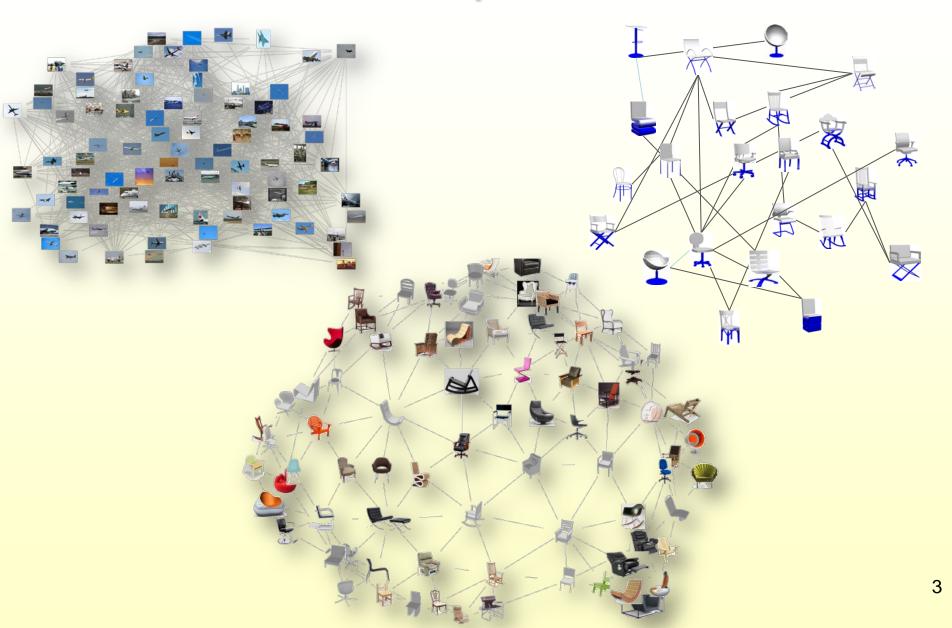
# Information Transport in 2D and 3D Between Visual Media



### **Image Networks**

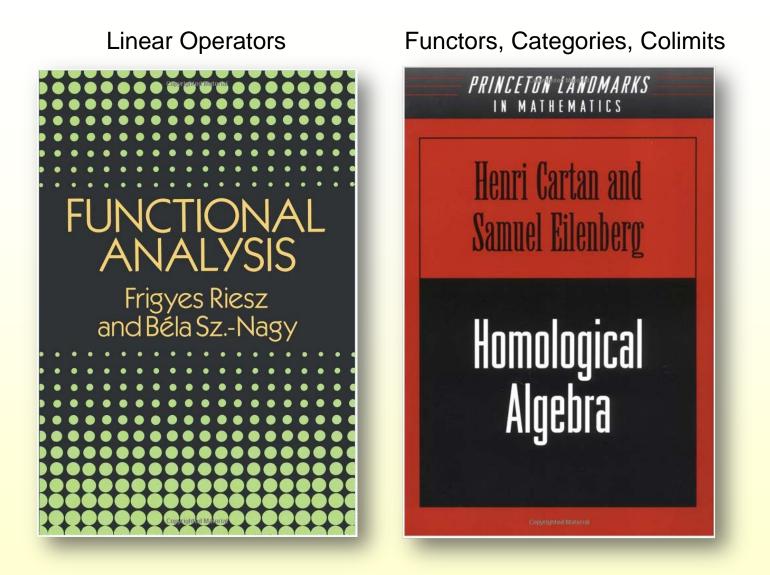


But also of Shapes, Mixed, Etc.



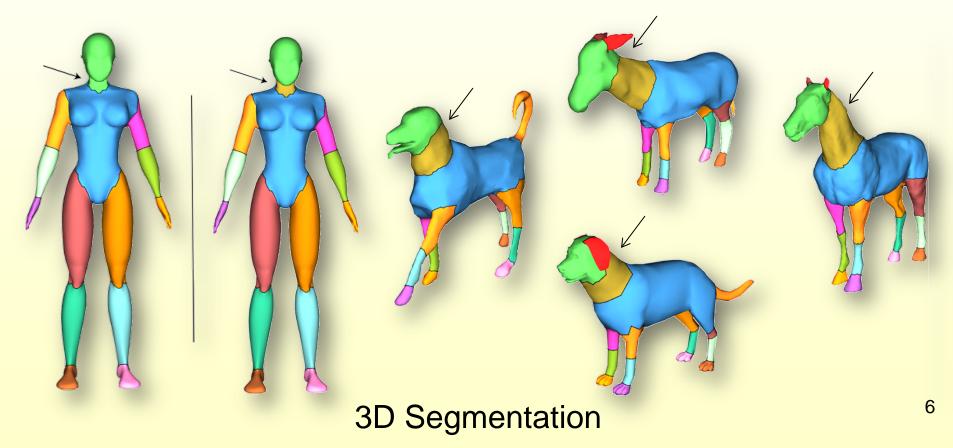
### **Relations Between Visual Data**



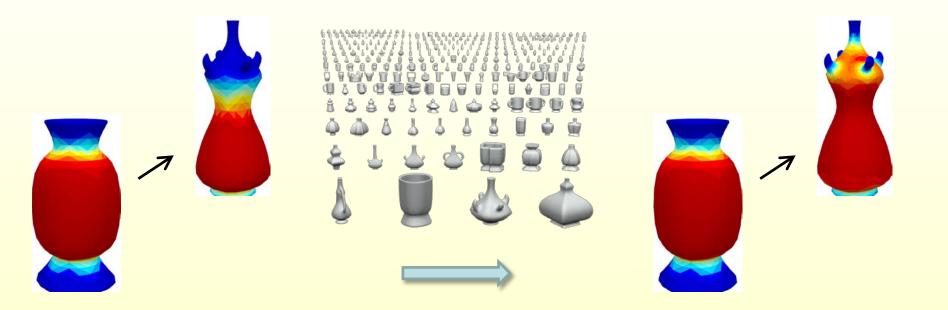


### Each Data Set Is Not Alone

 The interpretation of a particular piece of geometric data is deeply influenced by our interpretation of other related data



### And Each Data Set Relation is Not Alone



State of the art algorithm applied to the two vases

Map re-estimated using advice from the collection

**3D** Mapping

### Societies, or Social Networks of Data Sets

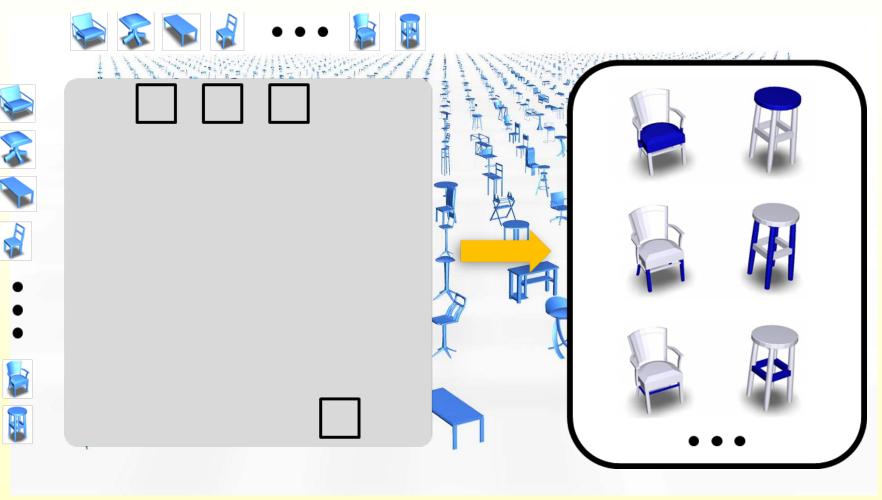
Our understanding of data can greatly benefit from extracting these relations and building relational networks.

We can exploit the relational network to

- transport information around the network
- assess the validity of operations or interpretations of data (by checking consistency against related data)
- assess the quality of the relations themselves (by checking consistency against other relations through cycle closure, etc.)

Thus the network becomes the great regularizer in joint data analysis.

### Semantic Structure Emerges from the Network

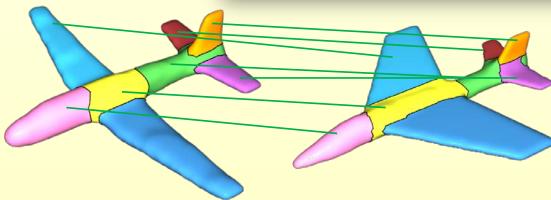


# Key: Relationships as Collections of Correspondences or Maps

### Multiscale mappings

- Point/pixel level
- part level

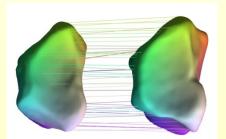


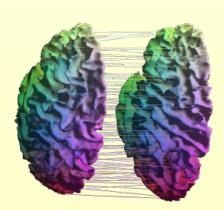


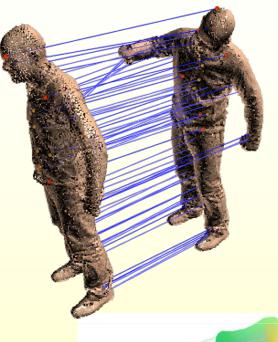
Maps capture what is the same or similar across two data sets

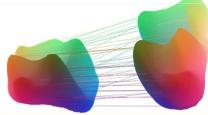
### Relationships as First-Class Citizens

- How can we make data set relationships concrete, tangible, storable, searchable objects?
- How can we understand the "relationships among the relationships" or maps?

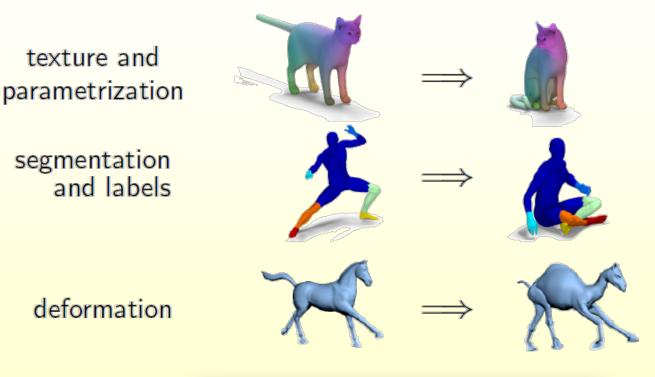








### Good Correspondences or Maps are Information Transporters



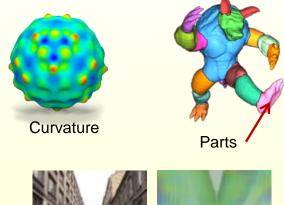


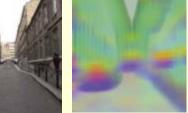


### A Dual View: Functions and Operators

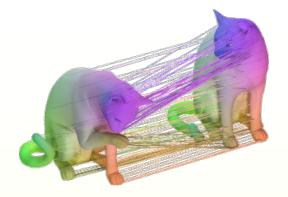
#### Functions on data

- Properties, attributes, descriptors, part indicators, etc.
- But also opinions, beliefs, etc
- Operators on functions
  - Maps of functions to functions





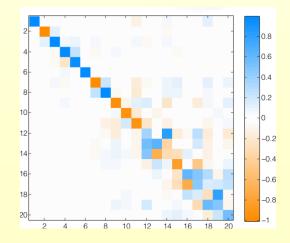
SIFT flow, C. Liu 2011



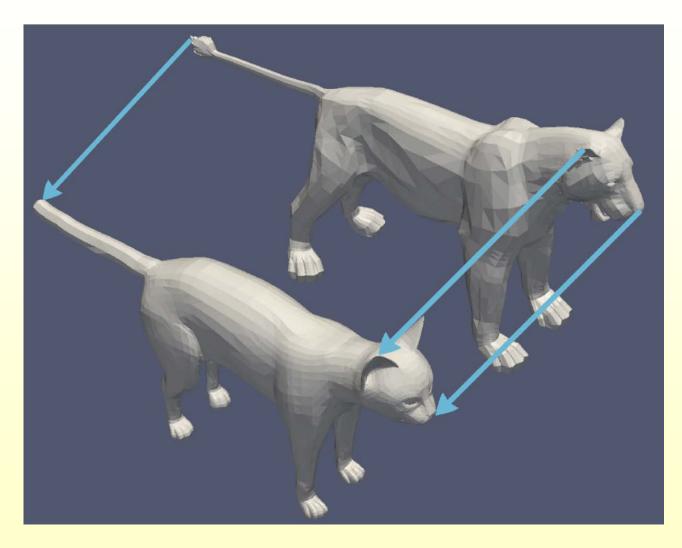


### Functional Maps (a.k.a. Operators)

[M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, L. G., Siggraph '12]

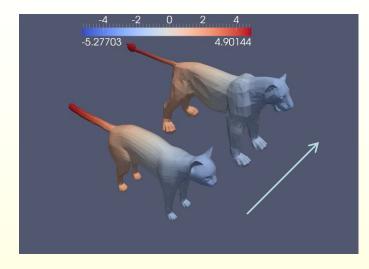


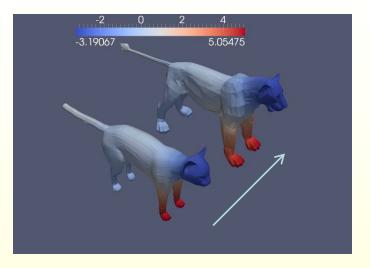
### Starting from a Regular Map $\phi$

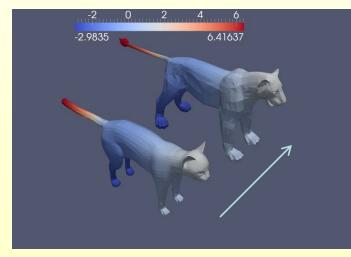


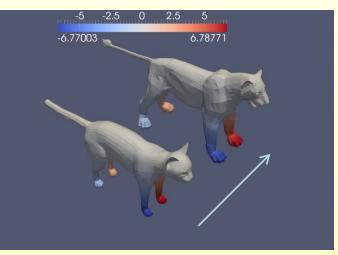
 $\varphi$ : lion  $\rightarrow$  cat

### Attribute Transfer via Pull-Back





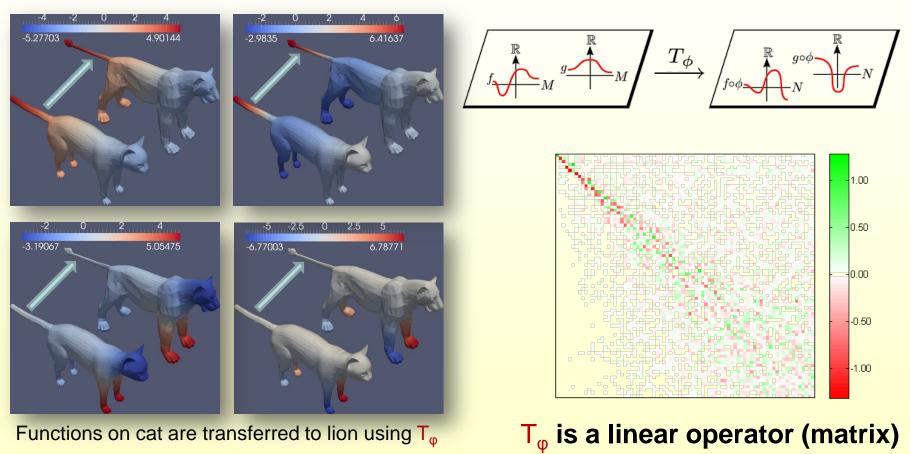




$$T_{\phi}$$
: cat  $\rightarrow$  lion

### **A Contravariant Functor**

#### from cat to lion



 $T_{\phi}: L^2(cat) \to L^2(lion)$  17

### **The Functional Framework**

- An ordinary shape map lifts to a linear operator mapping the function spaces
- With a truncated hierarchical basis, compact representations of functional maps are possible as ordinary matrices
- Map composition becomes ordinary matrix multiplication
- Functional maps can express many-to-many associations, generalizing classical 1-1 maps



Using truncated Laplace-Beltrami basis

### **Estimating the Mapping Matrix**

Suppose we don't know *C*. However, we expect a pair of functions  $f: M \to \mathbb{R}$  and  $g: N \to \mathbb{R}$  to correspond. Then, *C* must be s.t.  $C\mathbf{a} \approx \mathbf{b}$ 

where  $f = \sum_i \mathbf{a_i} \phi_i^M$ ,  $g = \sum_i \mathbf{b}_i \phi_i^N$ 



Given enough  $\{a_i, b_i\}$  pairs in correspondence, we can recover C through a linear least squares system.

### **Function Preservation Constraints**

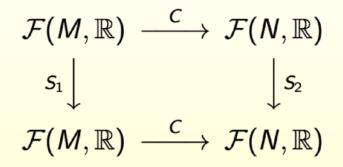
Suppose we don't know *C*. However, we expect a pair of functions  $f: M \to \mathbb{R}$  and  $g: N \to \mathbb{R}$  to correspond. Then, *C* must be s.t.  $C\mathbf{a} \approx \mathbf{b}$ 

Function preservation constraint is quite general and includes:

- O Descriptor preservation (e.g. Gaussian curvature, spin images, HKS, WKS).
- Landmark correspondences (e.g. distance to the point).
- Part correspondences (e.g. indicator function).
- Texture preservation

### **Commutativity Constraints**

In addition, we can phrase operator commutativity constraint, given two operators  $S_1 : \mathcal{F}(M, \mathbb{R}) \to \mathcal{F}(M, \mathbb{R})$  and  $S_2 : \mathcal{F}(N, \mathbb{R}) \to \mathcal{F}(N, \mathbb{R})$ .



Thus:  $CS_1 = S_2C$  or  $||CS_1 - S_2C||$  should be minimized

Note: this is a linear constraint on C.  $S_1$  and  $S_2$  could be symmetry operators or e.g. Laplace-Beltrami or Heat operators.

### Regularization

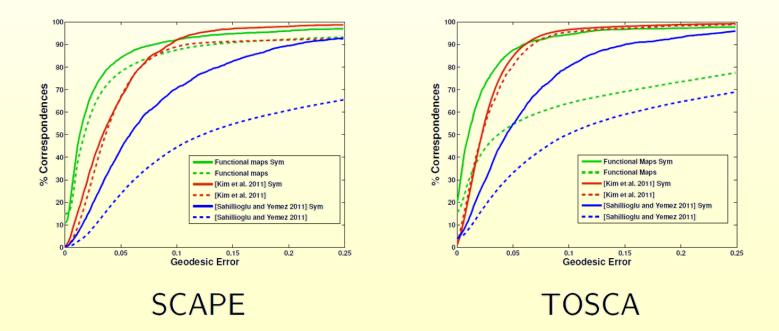
#### Lemma 1:

The mapping is *isometric*, if and only if the functional map matrix commutes with the Laplacian:

#### $C\Delta_1 = \Delta_2 C$

### **Map Estimation Quality**

A very simple method that puts together a modest set of constraints and uses 100 basis functions outperforms state-of-the-art:



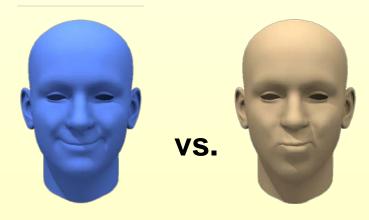
Roughly 10 probe functions + 1 part correspondence

### **App: Shape Differences**





[R. Rustamov, M. Ovsjanikov, O. Azercot, M. Ben-Chen, F. Chazal, L.G. Siggraph '13]



## A Functional View of Distortions

To measure distortions induced by a map, track how inner products of vectors change after transporting.

To measure distortions induced by a map, track how inner products of functions change after transporting.



Riemann

### The Art of Measurement

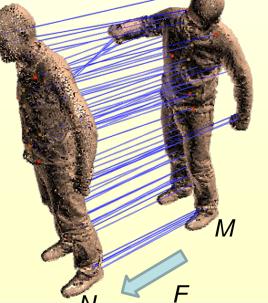
• A metric is defined by a functional inner product

$$h^M(f,g) = \int_M f(x)g(x)d\mu(x)$$

So we can compare M and N by comparing

 $h^N(F(f), F(g))$ 

The functional map *F* transports these functions to *N*, where we repeat this measurement with the inner product  $h^{N}(F(f),F(g))$ 



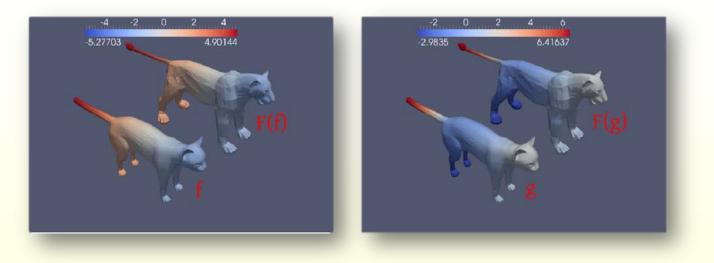


Riemann

 $h^M(f,g)$ 



### **Measurement Discrepancies**

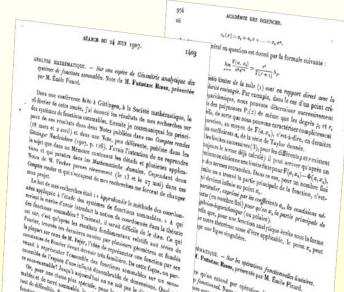


 $\int_{lion} F(f)F(g) \, d\mu_l \neq \int_{cat} fg \, d\mu_c$ after before

Both can be considered as inner products on the cat

### The Universal Compensator

#### Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences de Paris



A respect o une remain memorane ou communication setable? Justo'i anjourd'hai oa ne sait pa je dire. detentable? Javoja apparatos ca ne sar pas se care, 5 por une cisse pius speciale, pour lo systeme des fonctions soci-to a secondaria de la secondaria de la

1907

jo des reatements de possions, tacorie qui ressemblie à la sigue D'autre part, la notion de distance peut aussi dere fari, la sossoa de ansance pros suns erro pour un sous-cascable de points de aoire

Anness in Annesses ou proposano su comporte Pilos a ceste classe, il etisto su lien pilos interne entre la e anno su compostato de la compostato de la

itustique. - Sur le opérasions fonctionnelles linéaires. fautrice. - Sur er gerusses Jonssonnesses anno 4. Pandase Rass, présentée par M. Émile Picud. do, ou cutud but objection lin danad. Nots considerous la totalité Q des for s coire dess nombres fires, for exempti the des  $f_i(x)$ ,  $A(f_i)$  lend vers  $A(f_i)$ . e est dite linéaire. On avontre 1909" Lette and

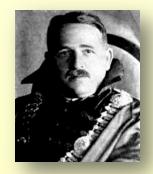
### **Riesz Representation Theorem**

#### There exists a linear operator

$$V: L^2(cat) \to L^2(cat)$$

#### such that

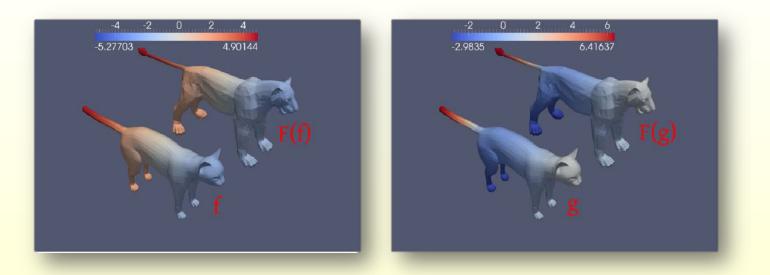
 $\langle f, g \rangle_{\text{after}} = \langle f, V(g) \rangle_{\text{before}}$ 



**Frigyes Riesz** 

28

### Area-Based Shape Difference: $V \approx F^T F$

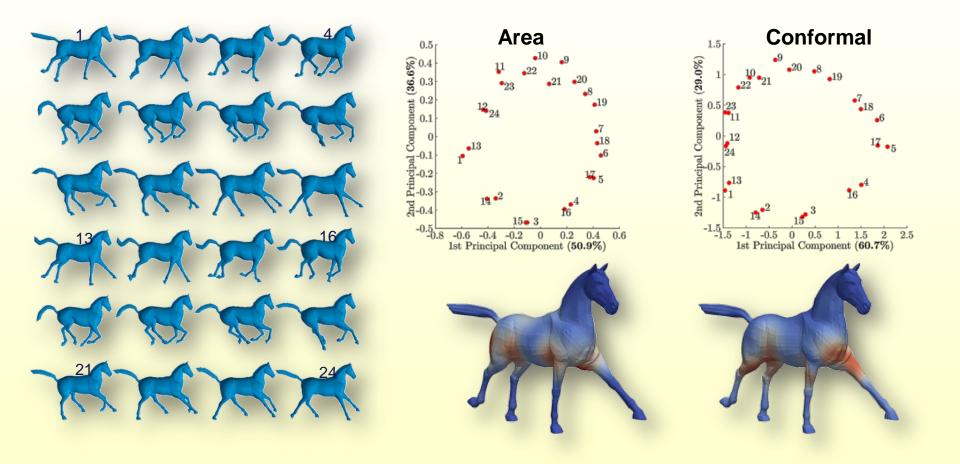


$$\int_{lion} F(f)F(g) \neq \int_{cat} fg$$

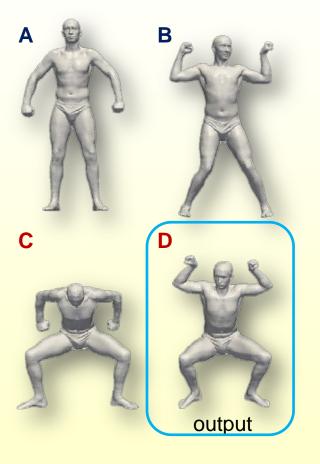
$$\int_{lion} F(f)F(g) = \int_{cat} fV(g)$$

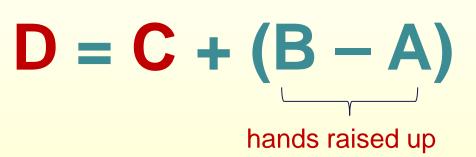
29

### **Intrinsic Shape Space**

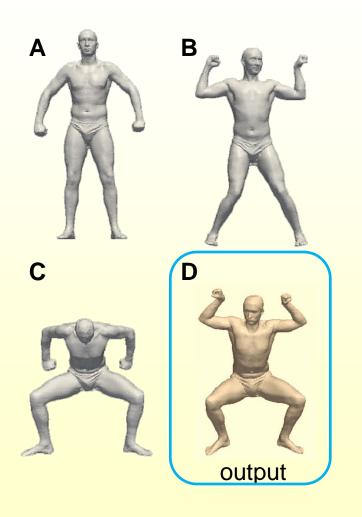


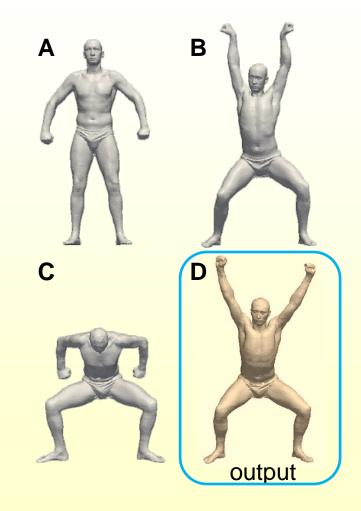
## Analogies: D relates to C as B relates to A





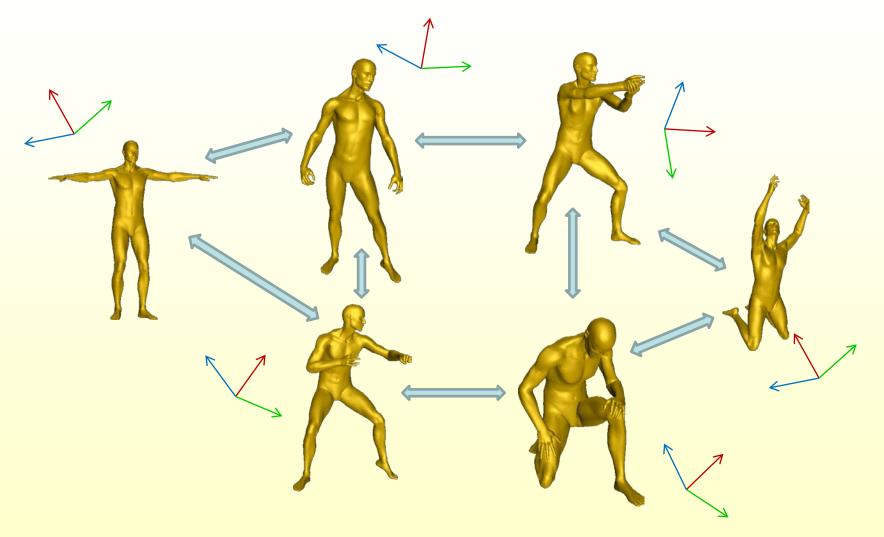
### **Shape Analogies**





### **The Network View**

### Map Networks for Related Data



Networks of "samenesses"

## A Functorial View $O^{EMINARS}$ bata summand of A. In this case, there exist here exi



Herni Cartan

Saunders MacLane

Samuel Eilenberg

### The Information is in the Maps

summand of A. In this case, there exist homomorphisms  $A'' \to A \to A'$ which together with the homomorphisms  $A' \rightarrow A \rightarrow A''$  yield a direct sum representation of A. Let F be a module and X a subset of F. We shall say that F is free with X as base if every  $x \in F$  can be written uniquely as a finite sum  $\sum \lambda_i x_i, \lambda_i \in \Lambda, x_i \in X$ . If X is any set we may define  $F_X$  as the set of all formal finite sums  $\sum \lambda_i x_i$ . If we identify  $x \in X$  with  $1x \in F_X$ , then  $F_X$  is In particular, if A is a module we may consider  $F_A$ . The identity mapping of the base of  $F_A$  onto A extends then to a homomorphism  $F_A \rightarrow A$ . If  $R_A$  denotes the kernel of this homomorphism, we obtain  $0 \to R_A \to F_A \to A \to 0.$ A diagram of modules and homomorphisms, is said to be commutative if the comof modules and noncomprising, is said to be commutative in the control positions  $A \to B \to D$  and  $A \to C \to D$  coincide. Similarly the diagram is commutative, if  $A \rightarrow B \rightarrow C$  coincides with  $A \rightarrow C$ .  $\begin{array}{c} \text{commutative, if } A \to B \to \mathbb{C} \text{ coincides with } A \to \mathbb{C}, \\ \text{We shall have occasion to consider larger diagrams involving several} \\ \text{onvaries and triangles} \quad W_{a \ chall \ eav \ that \ einch \ a \ diagrams \ ic \ commutative} \end{array}$ we shall have occasion to consider larger diagrams involving several squares and triangles. We shall say that such a diagram is commutative, if each commonant contare and triangle is commutative. each component square and triangle is commutative. PROPOSITION 1.1. (The ''5 lemma''). Consider a commutative diagram with exact rows. (1) Coker  $h_2 = 0$ , Ker  $h_1 = 0$ , Ker  $h_{-1} = 0$ , then Ker  $h_0 = 0$ . If Homological Algebra (2) Coker  $h_1 = 0$ , Coker  $h_{-1} = 0$ ,  $K_{n_1} = 0$ then  $Coker h_0 = 0$ 35 1956

### Yes, But With a Statistical Flavor

- Yes, straight out of the playbook of homological algebra / algebraic topology
- But, the maps
  - are not given by canonical constructions
  - they have to be estimated and can be noisy
  - the network acts as a regularizer ...
  - commutativity still very important
  - imperfections of commutativity in function transport convey valuable information: consistency vs. variability – "curvature" in shape/image space

# Cycle-Consistency Low-Rank

 In a map network, commutativity, path-invariance, or cycle-consistency are equivalent to a low rank or semidefiniteness condition on a big mapping matrix

$$X = \begin{pmatrix} I_m & X_{1,2} & \cdots & X_{1,n} \\ X_{1,2} & I_m & \cdots & \cdots \\ \vdots & \vdots & I_m & X_{(n-1),n} \\ X_{n,1} & \vdots & X_{n,(n-1)} & I_m \end{pmatrix}$$

 Conversely, such a low-rank condition can be used to regularize functional maps

### Shared Structure Discovery

# **Entity Extraction in Images**

[F. Wang, Q. Huang, L. G., ICCV '13]

Task: jointly segment a set of related images
 same object, different viewpoints/scales:









similar objects of the same class:

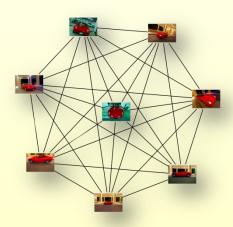


#### Benefits and challenges:

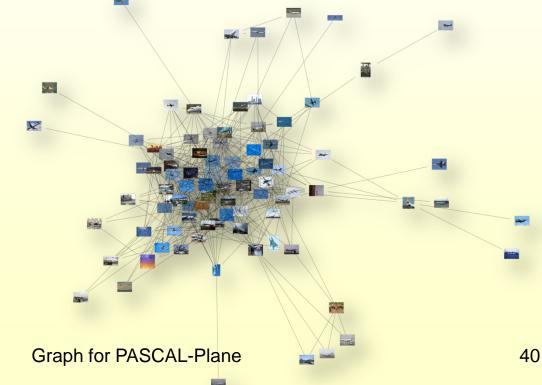
- Images can provide weak supervision for each other
- But exactly how should they help each other? How to deal with clutter and irrelevant content?

# Co-Segmentation via an Image Network

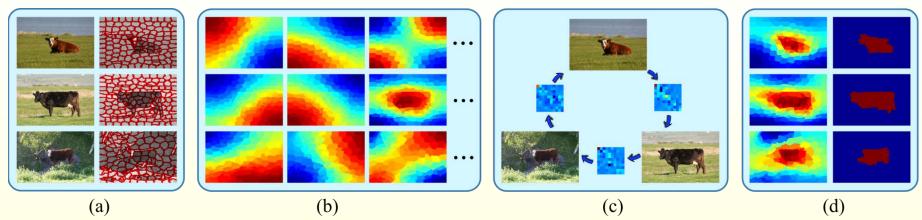
- Image similarity graph based on GIST
  - Each edge has global image similarity  $w_{ij}$  and functional maps in both directions;
  - Sparse if large.



Graph for iCoseg-Ferrari



# **The Pipeline**

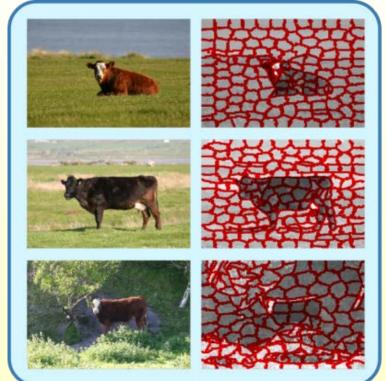


- a) Superpixel graph representation of images
- b) Functions over these graphs expressed in terms of the eigenvectors of the graph Laplacian
- c) Estimation of functional maps along network edges such that
  - Image features are preserved
  - Maps are cycle consistent in the network
- d) The "cow functions" emerge as the most consistently transported set <sup>41</sup>

### **Superpixel Representation**

### Over-segment images into super-pixels

- Build a graph on superpixels
  - Nodes: super-pixels
  - Edges weighted by length of shared boundary



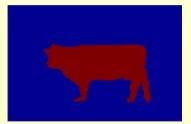
# **Encoding Functions over Graphs**

Basis of functional space

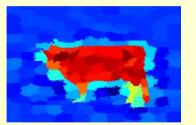
First M Laplacian
 eigenfunctions of the graph

$$f = \sum_{j=1}^{M} f_j b_i^j = B_i \mathbf{f}$$

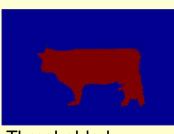
### Reconstruct any function with small error (M=30)



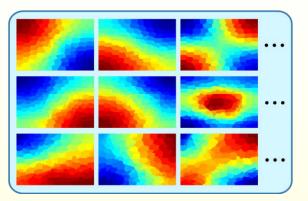
**Binary indicator function** 

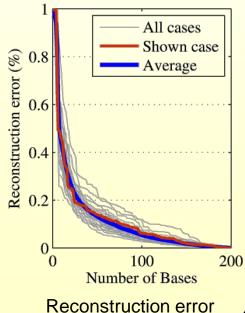


Reconstructed function



Thresholded reconstructed function





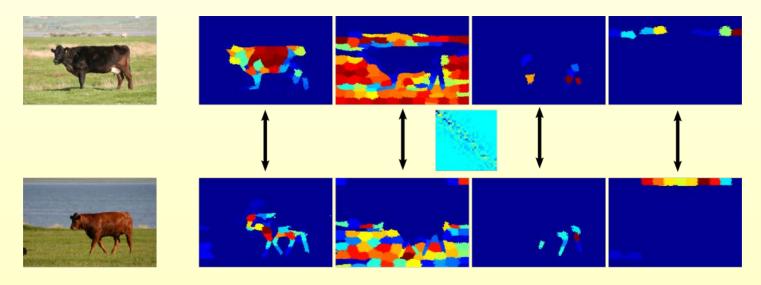
# Joint Estimation of Functional Maps,

### Functional map:

#### A linear map between functions in two functional spaces

$$\mathbf{f}' = X_{ij}\mathbf{f} \quad X_{ij} \in \mathcal{R}^{M \times M}$$

#### Can be recovered by a set of probe functions



# Joint Estimation of Functional Maps,

• Recover functional maps by aligning image features:  $f_{ij}^{\text{feature}} = \|X_{ij}D_i - D_j\|_1$ 

Features (probe functions) for each super-pixel:

- average RGB color, 3-dimensional;
- 64 dimensional RGB color histogram;
- 300-dimensional bag-of-visual-words.

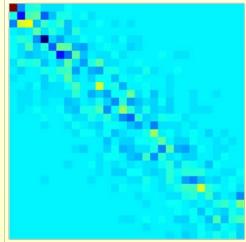
### Joint Estimation of Functional Maps, II

Regularization term:

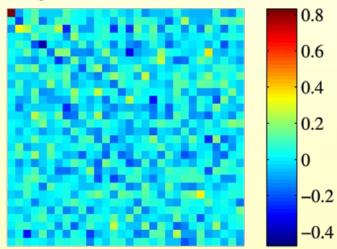
 $\Lambda_{i}$ ,  $\Lambda_{j}$  diagonal matrices of Laplacian eigenvalues

$$f_{ij}^{\text{reg}} = \|X_{ij}\Lambda_i - \Lambda_j X_{ij}\|^2$$

Correspond bases of similar spectra
Enforce sparsity of map



Map with regularization



Map without regularization

### Joint Estimation of Functional Maps, III

### Incorporating map cycle consistency:

 A transported function along any loop should be identical to the original function:

$$X_{i_k i_0} \cdots X_{i_1 i_2} X_{i_0 i_1} \mathbf{f} = \mathbf{f} \quad \bigstar \quad X_{i_j} Y_i = Y_j, \quad \forall (i,j) \in \mathcal{G}$$

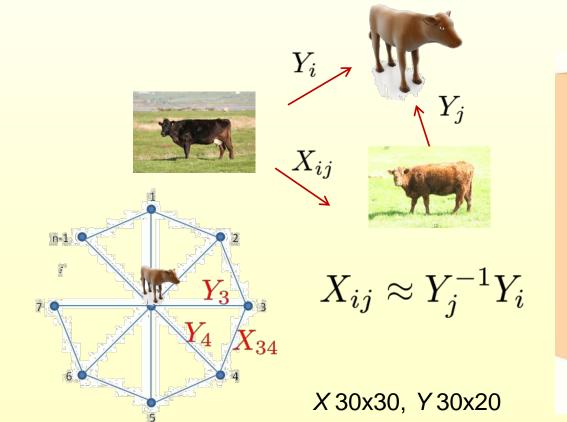
#### Consistency term:

$$f^{\text{cons}} = \sum_{(i,j)\in\mathcal{G}} w_{ij} f_{ij}^{\text{cons}} = \sum_{(i,j)\in\mathcal{G}} w_{ij} \|X_{ij}Y_i - Y_j\|_{\mathcal{F}}^2$$
  
Image global similarity weight via GIST

### Joint Estimation of Functional Maps, III

### Plato's allegory of the cave





## Joint Estimation of Functional Maps, IV

### Overall optimization

$$\min \sum_{(i,j)\in\mathcal{G}} w_{ij} \left( f_{ij}^{\text{feature}} + \mu f_{ij}^{\text{reg}} + \lambda f_{ij}^{\text{cons}} \right)$$
$$s.t. \quad Y^T Y = I_m$$

### • Alternating optimization: • Fix Y, solve X $\implies$ Independent QP problems $X_{ij}^{\star} = \arg \min_X \left( f_{ij}^{\text{feature}} + \mu f_{ij}^{\text{reg}} + \lambda f_{ij}^{\text{cons}} \right)$ • Fix X, solve Y $\implies$ Eigenvalue problem $\min_x \operatorname{trace}(Y^TWY)$ $s.t. Y^TY = I_m$ $W_{ij} = \begin{cases} \sum_{\substack{(i,j') \in \mathcal{G} \\ 0 & \text{otherwise}}} W_{ij} = \begin{cases} \sum_{\substack{(i,j') \in \mathcal{G} \\ 0 & \text{otherwise}}} W_{ij} \in \mathcal{G} \\ 0 & \text{otherwise}} \end{cases}$

# **Consistency Matters**

Source image





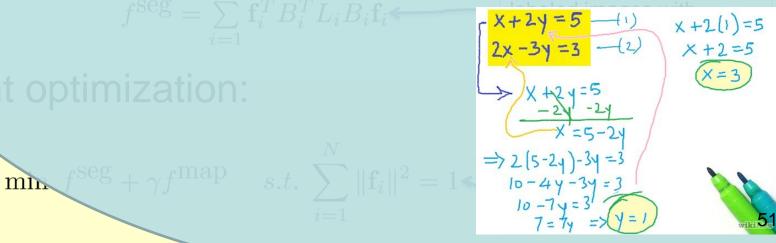
### **Generating Consistent** Segmentations

Two objectives for segmentation functions

consistent under functional map transpress

#### We look for network fixed points!

Voint optimization:



# Experiments

### iCoseg dataset

- Very similar or the same object in each class;
- 5~10 images per class.

### MSRC dataset

- Similar objects in each class;
- ~30 images per class.
- PASCAL data set
  - Retrieved from PASCAL VOC 2012 challenge;
  - All images with the same object label;
  - Larger scale;
  - Larger variability.

### iCoseg data set

#### New unsupervised method

- Mostly outperforms other unsupervised methods
- Sometimes even outperforms supervised methods
- Supervised input is easily added and further improves the results

| Kuettel'12 (Su | Unsupervised<br>Fmaps |       |
|----------------|-----------------------|-------|
| Image+transfer | Full model            | ГПарз |
| 87.6           | 91.4                  | 90.5  |

|                 |               |              | Ų              |               |
|-----------------|---------------|--------------|----------------|---------------|
| Class           | Joulin<br>'10 | Rubio<br>'12 | Vicente<br>'11 | Fmaps<br>-uns |
| Alaska Bear     | 74.8          | 86.4         | 90.0           | 90.4          |
| Red Sox Players | 73.0          | 90.5         | 90.9           | 94.2          |
| Stonehenge1     | 56.6          | 87.3         | 63.3           | 92.5          |
| Stonehenge2     | 86.0          | 88.4         | 88.8           | 87.2          |
| Liverpool FC    | 76.4          | 82.6         | 87.5           | 89.4          |
| Ferrari         | 85.0          | 84.3         | 89.9           | 95.6          |
| Taj Mahal       | 73.7          | 88.7         | 91.1           | 92.6          |
| Elephants       | 70.1          | 75.0         | 43.1           | 86.7          |
| Pandas          | 84.0          | 60.0         | 92.7           | 88.6          |
| Kite            | 87.0          | 89.8         | 90.3           | 93.9          |
| Kite panda      | 73.2          | 78.3         | 90.2           | 93.1          |
| Gymnastics      | 90.9          | 87.1         | 91.7           | 90.4          |
| Skating         | 82.1          | 76.8         | 77.5           | 78.7          |
| Hot Balloons    | 85.2          | 89.0         | 90.1           | 90.4          |
| Liberty Statue  | 90.6          | 91.6         | 93.8           | 96.8          |
| Brown Bear      | 74.0          | 80.4         | 95.3           | 88.1          |
| Average         | 78.9          | 83.5         | 85.4           | <b>90.5</b> 3 |
|                 |               |              |                |               |

Supervised

method



#### PASCAL

#### Unsupervised performance comparison

| Class      | Ν  | Joulin<br>'10 | Rubio<br>'12 | Fmaps<br>-uns |
|------------|----|---------------|--------------|---------------|
| Cow        | 30 | 81.6          | 80.1         | 89.7          |
| Plane      | 30 | 73.8          | 77.0         | 87.3          |
| Face       | 30 | 84.3          | 76.3         | 89.3          |
| Cat        | 24 | 74.4          | 77.1         | 88.3          |
| Car(front) | 6  | 87.6          | 65.9         | 87.3          |
| Car(back)  | 6  | 85.1          | 52.4         | 92.7          |
| Bike       | 30 | 63.3          | 62.4         | 74.8          |

#### Supervised performance comparison

| Class | Vicente<br>'11 | Kuettel<br>'12 | Fmaps<br>-s |
|-------|----------------|----------------|-------------|
| Cow   | 94.2           | 92.5           | 94.3        |
| Plane | 83.0           | 86.5           | 91.0        |
| Car   | 79.6           | 88.8           | 83.1        |
| Sheep | 94.0           | 91.8           | 95.6        |
| Bird  | 95.3           | 93.4           | 95.8        |
| Cat   | 92.3           | 92.6           | 94.5        |
| Dog   | 93.0           | 87.8           | 91.3        |

| Class | N   | L   | Kuettel<br>'12 | Fmaps<br>-s | Fmaps<br>-uns |
|-------|-----|-----|----------------|-------------|---------------|
| Plane | 178 | 88  | 90.7           | 92.1        | 89.4          |
| Bus   | 152 | 78  | 81.6           | 87.1        | 80.7          |
| Car   | 255 | 128 | 76.1           | 90.9        | 82.3          |
| Cat   | 250 | 131 | 77.7           | 85.5        | 82.5          |
| Cow   | 135 | 64  | 82.5           | 87.7        | 85.5          |
| Dog   | 249 | 121 | 81.9           | 88.5        | 84.2          |
| Horse | 147 | 68  | 83.1           | 88.9        | 87.0          |
| Sheep | 120 | 63  | 83.9           | 89.6        | 86.5          |

 New method mostly outperforms the state-ofthe-art techniques in both supervised and unsupervised settings

#### iCoseg: 5 images per class are shown



















#### iCoseg: 5 images per class are shown









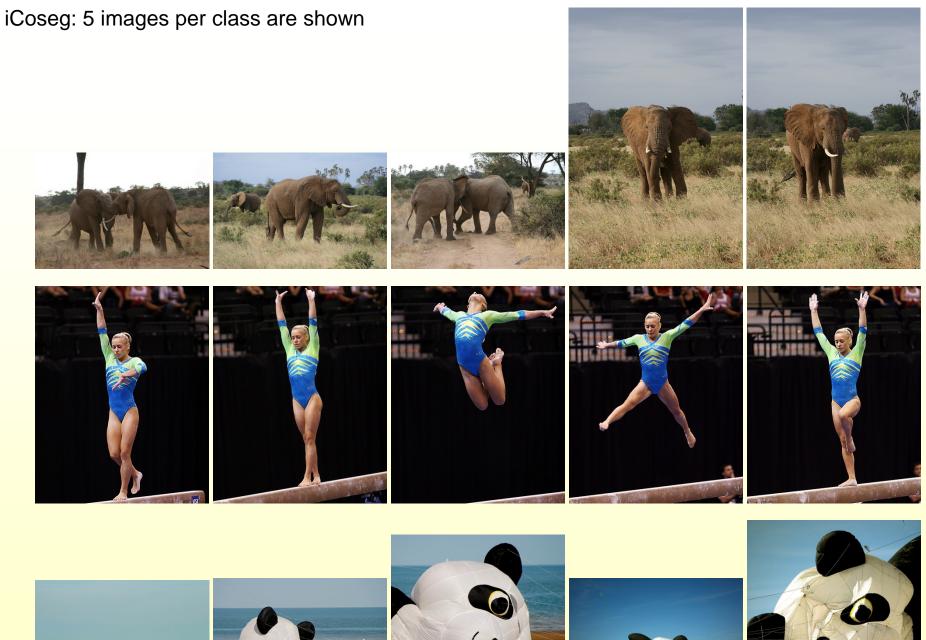












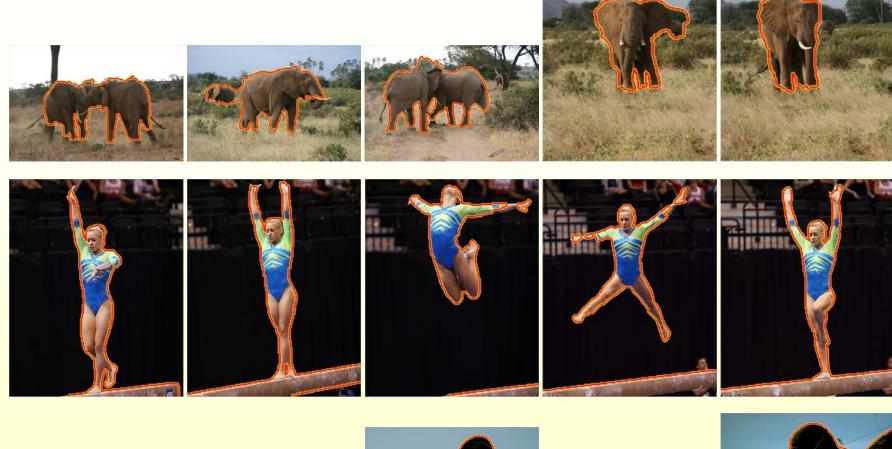






















#### MSRC: 5 images per class are shown



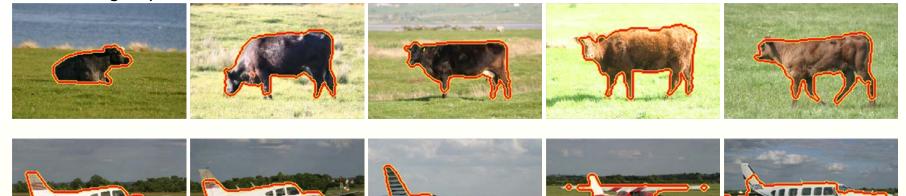






59

#### MSRC: 5 images per class are shown



1400000















































































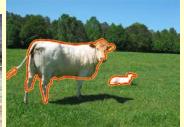
















# **Multi-Class Co-Segmentation**

[F. Wang, Q. Huang, M. Ovsjanikov, L. G., CVPR'14]

### Input:

- A collection of N images sharing M objects
- Each image contains a subset of the objects

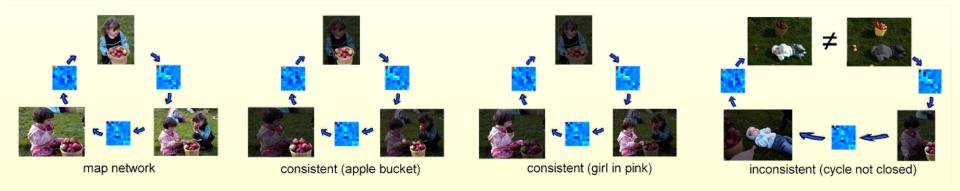


### Output

- Discovery of what objects appear in each image
- Their pixel-level segmentation

### **Consistent Functional Maps**

### Partial cycle consistency:



Must deal with non-total maps

Related to topological persistence / persistent homology

### **Consistent Functional Maps**

Latent functions: Y<sub>i</sub> = (y<sub>i1</sub>, ..., y<sub>iL</sub>)
Discrete variables: z<sub>i</sub> = {z<sub>il</sub> ∈ {0, 1}, 1 ≤ l ≤ L}
Relationship: Y<sub>i</sub>Diag(z<sub>i</sub>) = Y<sub>i</sub>
Consistency:

 $X_{ij}Y_i = Y_j \text{Diag}(z_i), \quad (i,j) \in \mathcal{E}.$ 



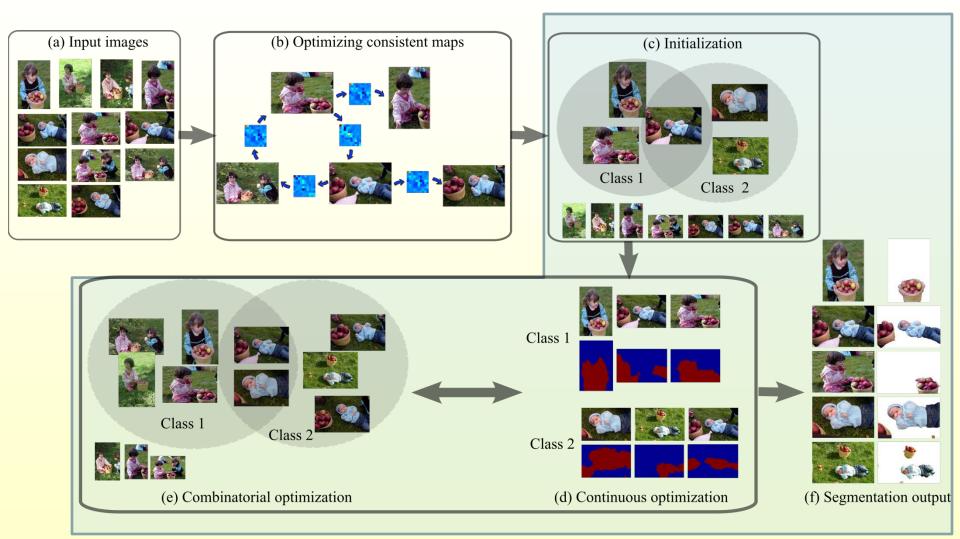
# **Consistent Functional Maps**

### The consistency regularization

$$f_{\text{cons}} = \mu \sum_{(i,j)\in\mathcal{E}} \|\mathbf{X}_{ij}\mathbf{Y}_i - \mathbf{Y}_j \text{Diag}(\boldsymbol{z}_i)\|^2 + \gamma \sum_{i=1}^N \|\mathbf{Y}_i - \mathbf{Y}_i \text{Diag}(\boldsymbol{z}_i)\|^2,$$

• Overall optimization  $\{X_{ij}^{\star}\} = \operatorname{argmin}_{X_{ij}} \left( \mu f_{\operatorname{cons}} + \sum_{(i,j) \in \mathcal{E}} f_{\operatorname{pair}} \right)$ 

### Framework



## Initialization

 Solve for consistent segmentation with ALL images together

$$f_{seg} = \frac{1}{|\mathcal{G}|} \sum_{(i,j)\in\mathcal{G}} \|X_{ij}s_{ik} - s_{jk}\|_F^2 + \frac{\gamma}{N} \sum_{i=1}^N s_{ik}^T L_i s_{ik}$$
$$= s_k \overline{L} s_k,$$

Pick the first M eigenvectors
Each object class is initialized as:

$$C_k = \{i, \text{ s.t. } \|s_{ik}\| \ge \max_i \|s_i\|/2\}$$

### **Optimizing Segmentation Functions**

Alternating between:

- Continuous optimization:
  - Optimal segmentation functions in each class
- Combinatorial optimization:
  - Class assignment by propagating segmentation functions

# **Continuous Optimization**

• Optimize segmentations in each object class • Consistent with functional maps • Align with segmentation cues • Mutually exclusive  $\min_{a} \sum_{i=1}^{M} \sum_{j=1}^{N} ||X_{ij}s_{ik} - s_{jk}||^{2}$ 

$$\begin{split} \min_{s_{ik},i\in\mathcal{C}_{k}} & \sum_{k=1}^{\sum} \sum_{(i,j)\in\mathcal{E}\cap(\mathcal{C}_{k}\times\mathcal{C}_{k})} \|X_{ij}s_{ik}-s_{jk}\|^{2} \\ &+ \gamma \sum_{l\neq k} \sum_{i\in\mathcal{C}_{k}\cap\mathcal{C}_{l}} (s_{il}^{T}s_{ik})^{2} + \mu \sum_{k=1}^{M} \sum_{i\in\mathcal{C}_{k}} s_{ik}^{T}L_{i}s_{ik} \\ \text{subject to} & \sum_{i\in\mathcal{C}_{k}} \|s_{ik}\|^{2} = |\mathcal{C}_{k}|, \quad 1 \leq k \leq K. \end{split}$$

### **Combinatorial Optimization**

### Expand each object class by propagating segmentations to other images

$$\begin{array}{ll} \max_{s_{ik}} & \frac{1}{|\mathcal{N}(i) \cap \mathcal{C}_k|} \sum_{j \in \mathcal{N}(i) \cap \mathcal{C}_k} (s_{ik}^T X_{ji} s_{jk})^2 \\ & -\gamma \sum_{l \neq k, i \in \mathcal{C}_l} (s_{ik}^T s_{il})^2 - \mu s_{ik}^T L_i s_{ik} \end{array}$$
bject to  $\|s_{ik}\|^2 = 1$ 

SU

### **Optimizing Segmentation Functions**

### More images will be included in each

object class

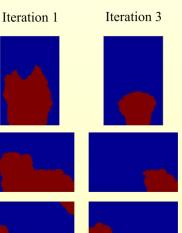


Iteration 2

 Segmentation functions are improved during iterations







Iteration 3

## **Experimental Results**

### Accuracy

- Intersection-over-union
- Find the best one-to-one matching between each cluster and each ground-truth object.
- Benchmark datasets
  - MSRC: 30 images, 1 class (degenerated case);
  - FlickrMFC data set: 20 images, 3~6 classes
  - PASCAL VOC: 100~200 images, 2 classes

### **Experimental Results**

| class      | Ν  | М | Kim'12 | Kim'11 | Joulin<br>'10 | Mukherjee<br>'11 | Ours |
|------------|----|---|--------|--------|---------------|------------------|------|
| Apple      | 20 | 6 | 40.9   | 32.6   | 24.8          | 25.6             | 46.6 |
| Baseball   | 18 | 5 | 31.0   | 31.3   | 19.2          | 16.1             | 50.3 |
| butterfly  | 18 | 8 | 29.8   | 32.4   | 29.5          | 10.7             | 54.7 |
| Cheetah    | 20 | 5 | 32.1   | 40.1   | 50.9          | 41.9             | 62.1 |
| Cow        | 20 | 5 | 35.6   | 43.8   | 25.0          | 27.2             | 38.5 |
| Dog        | 20 | 4 | 34.5   | 35.0   | 32.0          | 30.6             | 53.8 |
| Dolphin    | 18 | 3 | 34.0   | 47.4   | 37.2          | 30.1             | 61.2 |
| Fishing    | 18 | 5 | 20.3   | 27.2   | 19.8          | 18.3             | 46.8 |
| Gorilla    | 18 | 4 | 41.0   | 38.8   | 41.1          | 28.1             | 47.8 |
| Liberty    | 18 | 4 | 31.5   | 41.2   | 44.6          | 32.1             | 58.2 |
| Parrot     | 18 | 5 | 29.9   | 36.5   | 35.0          | 26.6             | 54.1 |
| Stonehenge | 20 | 5 | 35.3   | 49.3   | 47.0          | 32.6             | 54.6 |
| Swan       | 20 | 3 | 17.1   | 18.4   | 14.3          | 16.3             | 46.5 |
| Thinker    | 17 | 4 | 25.6   | 34.4   | 27.6          | 15.7             | 68.6 |
| Average    | -  | - | 31.3   | 36.3   | 32.0          | 25.1             | 53.1 |

Performance comparison on the MFCFlickr dataset

| class  | Ν  | Joulin'10 | Kim'11 | Mukherjee'11 | Ours |
|--------|----|-----------|--------|--------------|------|
| Bike   | 30 | 43.3      | 29.9   | 42.8         | 51.2 |
| Bird   | 30 | 47.7      | 29.9   | -            | 55.7 |
| Car    | 30 | 59.7      | 37.1   | 52.5         | 72.9 |
| Cat    | 24 | 31.9      | 24.4   | 5.6          | 65.9 |
| Chair  | 30 | 39.6      | 28.7   | 39.4         | 46.5 |
| Cow    | 30 | 52.7      | 33.5   | 26.1         | 68.4 |
| Dog    | 30 | 41.8      | 33.0   | -            | 55.8 |
| Face   | 30 | 70.0      | 33.2   | 40.8         | 60.9 |
| Flower | 30 | 51.9      | 40.2   | -            | 67.2 |
| House  | 30 | 51.0      | 32.2   | 66.4         | 56.6 |
| Plane  | 30 | 21.6      | 25.1   | 33.4         | 52.2 |
| Sheep  | 30 | 66.3      | 60.8   | 45.7         | 72.2 |
| Sign   | 30 | 58.9      | 43.2   | -            | 59.1 |
| Tree   | 30 | 67.0      | 61.2   | 55.9         | 62.0 |

Performance comparison on the MSRC dataset

| class                 | Ν   | NCut | MNcut | Ours |
|-----------------------|-----|------|-------|------|
| Bike + person         | 248 | 27.3 | 30.5  | 40.1 |
| Boat + person         | 260 | 29.3 | 32.6  | 44.6 |
| Bottle + dining table | 90  | 37.8 | 39.5  | 47.6 |
| Bus + car             | 195 | 36.3 | 39.4  | 49.2 |
| bus + person          | 243 | 38.9 | 41.3  | 55.5 |
| Chair + dining table  | 134 | 32.3 | 30.8  | 40.3 |
| Chair + potted plant  | 115 | 19.7 | 19.7  | 22.3 |
| Cow + person          | 263 | 30.5 | 33.5  | 45.0 |
| Dog + sofa            | 217 | 44.6 | 42.2  | 49.6 |
| Horse + person        | 276 | 27.3 | 30.8  | 42.1 |
| Potted plant + sofa   | 119 | 37.4 | 37.5  | 40.7 |

Performance comparison on the PASCAL-multi dataset

#### Apple + picking



#### Baseball + kids











#### Butterfly + blossom











Apple + picking (red: apple bucket; magenta: girl in red; yellow: girl in blue; green: baby; cyan: pum



#### Baseball + kids (green: boy in black; blue: boy in grey; yellow: coach.)











#### Butterfly + blossom (green: butterfly in orange; yellow: butterfly in yellow; cyan: red flowe











#### Cheetah + Safari











#### Cow + pasture











#### Dog + park











#### Dolphin + aquarium











#### Cheetah + Safari (red: cheetah; yellow: lion; magenta: monkey.)



#### Cow + pasture (red: black cow; green: brown cow; blue: man in blue.)











#### Dog + park (red: black dog; green: brown dog; blue: white dog.)



#### Dolphin + aquarium (red: killer whale; green: dolphin.)





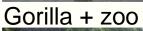






#### Fishing + Alaska













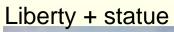












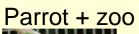






















Fishing + Alaska (blue: man in white; green: man in gray; magenta: woman in gray; yellow: salmon.



Liberty + statue (blue: empire state building; green: red boat; yellow: liberty state









Parrot + zoo (red: hand; green: parrot in green; blue: parrot in red.)











#### Stonehenge



Swan + zoo











#### Thinker + Rodin











#### Stonehenge (blue: cow in white; yellow: person; magenta: stonehenge.)



#### Swan + zoo (blue: gray swan; green: black swan.)



#### Thinker + Rodin (red: sculpture Thinker; green: sculpture Venus; blue: Van Gogh.)











Apple + picking (red: apple bucket; magenta: girl in red; yellow: girl in blue; green: baby; cyan: pum



#### Baseball + kids (green: boy in black; blue: boy in grey; yellow: coach.)











#### Butterfly + blossom (green: butterfly in orange; yellow: butterfly in yellow; cyan: red flowe



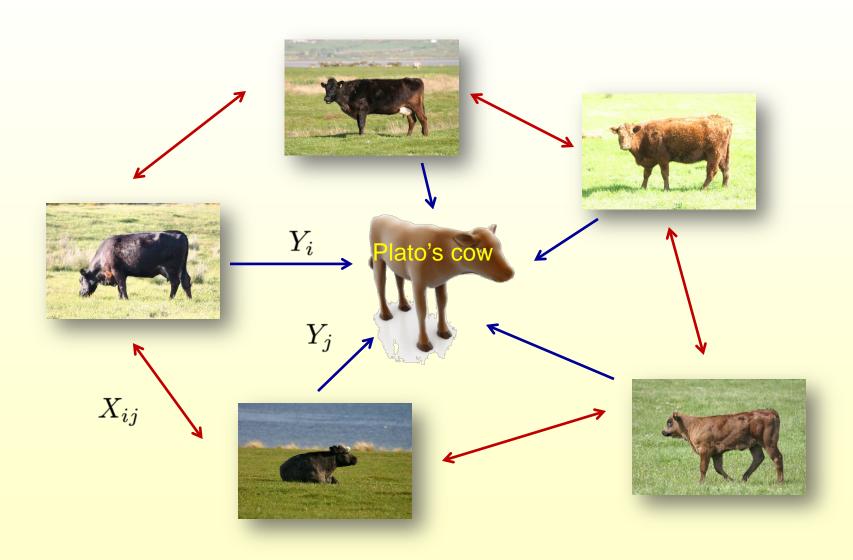




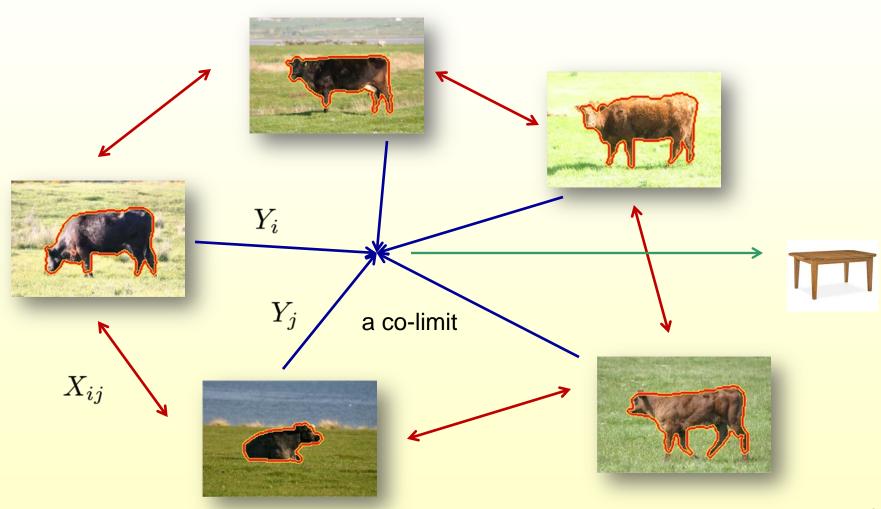




### The Network is the Abstraction



### The Network is the Abstraction



# Mosaicing or SLAM at the Level of Functions

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f08/www/proj4/www/gme/





robotics.ait.kyushu-u.ac.jp

### Networks of Shapes and Images



# Depth Inference from a Single Image

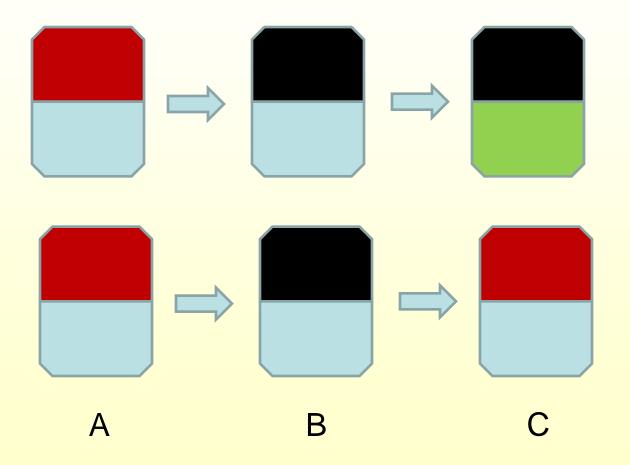


single image

shape network

inferred depth

## Maps vs. Distances/Similarities Networks vs. Graphs



## **Conclusion: Functoriality**

### Classical "vertical" view of data analysis:

Signals to symbols

from features, to parts, to semantics ...



 A new "horizontal" view based on peer-topeer signal relationships
 so that semantics emerge from the network

# Acknowledgements

### Collaborators:

- Current students: Justin Solomon, Fan Wang
- Current and past postdocs: Adrian Butscher, Qixing Huang, Raif Rustamov
- Senior: Mirela Ben-Chen, Frederic Chazal, Maks Ovsjanikov

Microsoft Goog

Connecting People



Sponsors:



National Science Foundation

Office of Naval Research



