Using 3D data for image interpretation and geometric reasoning

Martial Hebert Abhinav Gupta David Fouhey, Adrien Matricon, Wajahat Hussain

- Sparse mid-level primitives can be used to transfer geometric information?
- Can this helps in detection and matching tasks?
- Geometric reasoning can use this local evidence to produce a consistent geometric interpretation?

Primitives

<u>Visually</u> <u>Discriminative</u>

<u>Geometrically</u> <u>Informative</u>

Surface Normals

Saurabh Singh et al. Discriminative Mid-Level Patches

NYU v2 Dataset (Silberman et al., 2012)

Learning primitives

Representation

Detector

Canonical Form

Instances

Learning Primitives

Approach: iterative procedure

Sparse Transfer

Sparse Transfer

Sparse Transfer

Dense Transfer

Sample Results – Qualitative

Confidence

Most Confident Result

Least Confident Result

Failures

	Summary Stats (⁰) (Lower Better)			% Good Pixels (Higher Better)			
	Mean	Median	RMSE	11.25°	22.5°	300	
3D Primitives	<u>33.0</u>	<u>28.3</u>	<u>40.0</u>	<u>18.8</u>	<u>40.7</u>	<u>52.4</u>	
Singh et al.	35.0	32.4	40.6	11.2	32.1	45.8	
Karsch et al.	40.8	37.8	46.9	7.9	25.8	38.2	
Hoiem et al.	41.2	34.8	49.3	9.0	31.7	43.9	
Saxena et al.	47.1	42.3	56.3	11.2	28.0	37.4	
RF + Dense SIFT	36.0	33.4	41.7	11.4	31.1	44.2	

More general environments?

KITTI Dataset: Geiger, Lenz, Urtasun, '12

- Large regions without surface interpretation
- Fewer linear/planar structures to anchor
- Irregular distribution of 3D training data

Discovered Primitives (Examples)

	Summary Stats (º) (Lower Better)			% Good Pixels (Higher Better)			
	Mean	Median	RMSE	11.25°	22.5°	300	
3D Primitives	<u>23.4</u>	<u>9.9</u>	35.4	<u>52.6</u>	<u>64.4</u>	<u>69.4</u>	
RF + Dense SIFT	24.2	16.3	<u>32.8</u>	39.2	59.3	68.3	

Contact points

Object surfaces + Contact points

Failures

Failures

Digression

Style and structure

Style vs. structure?

Tenenbaum & Freeman. Separating Style and Content with Bilinear Models. Neural Computation. 2000.

Lee, Efros, Hebert. Style-aware Mid-level Representation for Discovering Visual Connections in Space and Time. 2013.

Casablanca Hotel, New York

Meritan Apartments Sydney

Sheraton Hotels (North America)

Using geometric and physical constraints

The Story So Far

The Story So Far

Adding Physical/Geometric Constraints

Adding Physical/Geometric Constraints

Huffman 71, Clowes 71, Kanade 80, 81 Sugihara 86, Malik 87, etc.

Edges between surfaces

Concave (-)

Convex (+)

vp₁

vp₁

Labeling

x_i : is cell *i* on?

Unary terms

Should cell *i* be on?

Binary Potentials

Binary terms

Binary terms

Binary terms

Constraints

Qualitative Results

Input

Ground Truth

3D Primitives

Projected 3D Primitives

Proposed

Input

Ground Truth

3D Primitives

Projected 3D Primitives

Proposed

Random Qualitative Results

3D Primitives

Proposed

Quantitative Results

	Summary Stats (⁰) (Lower Better)			% Good Pixels (Higher Better)		
	Mean	Median	RMSE	11.25°	22.5°	30°
Proposed	<u>37.5</u>	<u>17.2</u>	<u>53.2</u>	<u>41.9</u>	<u>53.9</u>	<u>58.0</u>
3D Primitives	38.5	19.0	54.2	41.7	52.4	56.3
Hedau et al.	43.2	24.8	59.4	39.1	48.8	52.3
Lee et al.	47.6	43.4	60.6	28.1	39.7	43.9
Karsch et al.	46.6	43.0	53.6	5.4	19.9	31.5
Hoiem et al.	45.6	38.2	55.1	8.6	30.5	41.0

Convex Concave

Now: Better reasoning Semantic information Less structured environments Coarse-to-fine depth Martial Hebert Abhinav Gupta David Fouhey, Adrien Matricon, Wajahat Hussain

ONR MURI NDSEG Bosch R&D