

SLAM@NVIDIA Kari Pulli | Senior Director of Research

- Keyframe-based SlAM
- 3D rendering for Augmented Reality
- Problems with traditional keyframe-based SLAM
- Solution: Deferred Triangulation SLAM

KeyFrame-based SLAM

William Property in the

How to deal with the rotation?

Tobias Höllerer*

Live Tracking and Mapping from Both General and Rotation-Only Camera Motion

Steffen Gauglitz*

Chris Sweeney* Jonathan Ventura*

Matthew Turk*

Department of Computer Science, University of California, Santa Barbara

ISMAR 2012

Handling Pure Camera Rotation in Keyframe-Based SLAM

Christian Pirchheim, Dieter Schmalstieg, Gerhard Reitmayr * Graz University of Technology

ISMAR 2013

This is how

DT-SLAM: Deferred Triangulation for Robust SLAM

Daniel Herrera C.[†], Kihwan Kim[‡], Juho Kannala[†], Kari Pulli[‡], and Janne Heikkilä[†] [†]University of Oulu [‡]NVIDIA Research

3DV 2014

How to deal with the rotation?

Deferred triangulation

0.5x Speed for visualization

Deferred 2D points

How to deal with the rotation?

- Deferred triangulation
- Jointly (2D/3D) constrain a pose

0.5x Speed for visualization

Deferred 2D points

Triangulated 3D points

How to overcome the rotation?

- Deferred triangulation
- Jointly (2D/3D) constrain a pose
- Region merging

 $E_{3D} = ||\phi([\mathbf{R}_k|\mathbf{t}_k]\tilde{\mathbf{x}}) - \mathbf{m}_k||^2.$

$\underset{\mathbf{R}_k,\mathbf{t}_k}{\operatorname{arg\,min}}\sum_i \rho(E_{3D,i})$

Epipolar segment

Epipolar segment

 $E_{3D} = ||\boldsymbol{\phi}([\mathbf{R}_k|\mathbf{t}_k]\tilde{\mathbf{x}}) - \mathbf{m}_k||^2.$

$\underset{\mathbf{R}_{k},\mathbf{t}_{k}}{\operatorname{arg\,min}}\sum_{i}\rho(E_{3D,i})+\sum_{j}\rho(E_{2D,j})$

Bundle Adjustment

$\arg\min_{\mathscr{R},\mathscr{T},\mathscr{X}}\sum_{k\to K}\left(\sum_{i\to M}\rho(E_{3D,k,i})+\sum_{j\to N}\rho(E_{2D,k,j})\right)$

📀 NVIDIA.

DT-SLAM

PTAM Klein et al.

📀 NVIDIA.

Comparison with Hybrid SLAM and PTAM

Results from Hybrid SLAM and PTAM taken directly from Pirchheim et al. The footage contains captions from the original video

Another scene reconstruction example

x2 speed

Summary

Keyframe-based SLAM is efficient

and can run in real time on mobile devices

But it has problems

- A separate initialization phase is annoying
- Breaking with pure rotations is a critical failure

Both can be addressed by

- tracking first in 2D
- deferring triangulation until there is enough baseline between the keyframes

Bonus: we plan to open source the implementation

