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Autonomous Driving

State of the art

Localization, path planning, obstacle avoidance

Heavy usage of Velodyne and detailed (recorded) maps

Goal: autonomous driving cheap sensors and little prior knowledge

Problems for computer vision

Stereo, optical flow, visual odometry, structure-from-motion

Object detection, recognition and tracking

3D scene understanding
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Benchmarks: KITTI Data Collection

Two stereo rigs (1392× 512 px, 54 cm base, 90◦ opening)

Velodyne laser scanner, GPS+IMU localization

6 hours at 10 frames per second!
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The KITTI Vision Benchmark Suite
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First Difficulty: Sensor Calibration

TGPS

TVelodyne

TC

TC

Camera calibration [Geiger et al., ICRA 2012]

Velodyne ↔ Camera registration

GPS+IMU ↔ Velodyne registration
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Second Difficulty: Object Annotation

3D object labels: Annotators (undergrad students from KIT working for
months)

Occlusion labels: Mechanical Turk
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One more Difficulty: Evaluation

More than 200 submissions, 8000 downloads since CVPR 2012!
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http://www.cvlibs.net/datasets/kitti/


An autonomous system has to sense the environment
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3D Reconstruction

Goal: given 2 cameras mounted on top of the car, reconstruct the
environment in 3D.
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Joint Stereo, Flow, Occlusion and Segmentation

Slanted-plane MRF with explicit occlusion handling which also computes an
over-segmentation of the image into superpixels

MRF on continuous variables (slanted planes) and discrete var. (boundary,
super pixel assignments, outliers)
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Energy that looks at shape, compatibility and boundary length
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Comparison to the State-of-the-art on KITTI

Stereo� Flow�

��� ��� ��� ��� ��� ��� 	�� ��� ��� ��� ��� ��� ��� 	�� 
��

Ours,(Joint)�

Ours,(Joint)�

Ours,(Stereo)� Ours,(Flow)�
VC4SF�

PCBP4SS�

StereoSLIC�

PR4Sf+E�

PCBP�

PR4Sceneflow�

AARBM�

wSGM� 4.97%�

4.86%�

4.36%�

4.04%�

4.02%�

3.92%�

3.40%�

3.39%�

3.05%�

2.83%� VC4SF�

PR4Sf+E�

PCBP4Flow�

MoMonSLIC�

PR4Sceneflow�

NLTGV4SC�

TGV2ADCSIFT�

BTF4ILLUM� 6.52%�

6.20%�

5.93%�

3.91%�

3.76%�

3.64%�

3.57%�

3.38%�

2.82%�

2.72%�

Error,>,3,pixels,(Non4Occluded)� Error,>,3,pixels,(Non4Occluded)�

[Vogel,,et,al,,2014]�

[Vogel,,et,al,,2014]�

[Vogel,,et,al,,2013]�

[Vogel,,et,al,,2013]�[Vogel,,et,al,,2013]�

[Vogel,,et,al,,2013]�

[Yamaguchi,,et,al,,2013]�

[Yamaguchi,,et,al,,2013]� [Yamaguchi,,et,al,,2013]�

[Yamaguchi,,et,al,,2013]�[Yamaguchi,,et,al,,2012]�

[Ran_l,,et,al,,2014]�

[Braux4Zin,,et,al,,2013]�

[Demetz,,et,al,,2014]�

[Einecke,,et,al,,2014]�

[Spangenberg,,et,al,,2013]�

Runtime on 1Core@3.5GHz for average resolution 1237.1 x 374.1 pixels

Joint� Stereo)only� Flow)only�

Total)run1me� 26.3)sec.� 4.8)sec.� 11.0)sec.�
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Results on KITTI

[K. Yamaguchi, D. McAllester and R. Urtasun, ECCV 2014]

Disparity)image�

Flow)image�

Occlusion�
Hinge�
Coplanar�
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An autonomous system has to understand the scene in 3D
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3D Scene Understanding

Goal: Infer from a short (≈10s) video sequence:

Geometric properties, e.g., street orientation

Topological properties, e.g., number of intersecting streets

Semantic activities, e.g., traffic situations at an intersection

3D objects, e.g., cars
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Geometric Model

1 2 3

4 5 6

7

(Model topology) (Geometric parameters)

R. Urtasun ( UofT) Autonomous Driving Oct 3, 2014 15 / 34



Static and Dynamic Observations

Observations

3D Tracklets: Generate tracklets from 2D detections in 3D by employing
the orientation as well as size of the bounding boxes

Lines that follow the dominant orientations in the scene (i.e., reasoning
about vanishing points).
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Static and Dynamic Observations

Observations

3D Tracklets: Generate tracklets from 2D detections in 3D by employing
the orientation as well as size of the bounding boxes

Segmentation of the scene into semantic labels.

Lines that follow the dominant orientations in the scene (i.e., reasoning
about vanishing points).

Representation

We will reason about dynamics in bird eye’s perspective and static in the
image.
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Why high-order semantics?

Certain behaviors are not possible given the traffic ”patterns”

The arrows represent our concept of lane
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Joint Model

Let a be the traffic pattern, and ln the lane associated with a tracklet

Road parameters are R = {θ, r , c,w , α},
The joint distribution is

p(E ,R) = p(R)︸ ︷︷ ︸
prior

[∑
a

N∏
n=1

∑
ln

p(tn, ln, a|R)

]
︸ ︷︷ ︸

Vehicle Tracklets

p(vf |R)p(vc |R)︸ ︷︷ ︸
Vanishing Points

p(S|R)︸ ︷︷ ︸
Semantic Labels

with E the image evidence.

Show the simplify graphical model
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Vanishing Points and Segmentation Likelihoods

p(E ,R) = p(R)︸ ︷︷ ︸
prior

[∑
a

N∏
n=1

∑
ln

p(tn, ln, a|R)

]
︸ ︷︷ ︸

Vehicle Tracklets

p(vf |R)p(vc |R)︸ ︷︷ ︸
Vanishing Points

p(S|R)︸ ︷︷ ︸
Semantic Labels

Make geometry agree with the vanishing points

Make geometry agree with the segmentation
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Full Graphical Model

The joint distribution is

p(E ,R) = p(R)︸ ︷︷ ︸
prior

[∑
a

N∏
n=1

∑
ln

p(tn, ln, a|R)

]
︸ ︷︷ ︸

Vehicle Tracklets

p(vf |R)p(vc |R)︸ ︷︷ ︸
Vanishing Points

p(S|R)︸ ︷︷ ︸
Semantic Labels

with E the image evidence, R the intersection variables, ln the lane index
and a the traffic pattern

The vehicle tracklets are a little bit more complicated than described so far
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Tracklet model

1i
g


1i
h


i
g

i
h

i
d

nl

a

V

S

Nframe 1i frame i

We reason about:

parked cars: in which spot?

moving vehicles: in which lane and where in the lane are they?

the traffic situation (i.e., traffic pattern)

Our tracklet formulation p(tn, ln, a|R) combines a HMM with a dynamical system
with constraints
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Results: Geometry and Trackets estimation

Inference is done via Metropolis Hastings sampling

Location Orientation Overlap Pattern error
Method 3-arm 4-arm 3-arm 4-arm 3-arm 4-arm 3-arm 4-arm

[Geiger11] 4.3 m 5.4 m 3.3 deg 8.0 deg 58.7% 56.0% – –
Ours 5.7 m 4.9 m 2.4 deg 4.3 deg 61.5% 61.3% 18.2% 19.4%

Table : Geometry estimation

T-L error (all) T-L error (>10m)
Method 3-arm 4-arm 3-arm 4-arm

[Geiger11] 46.7% 49.9% 17.9% 30.1%
Ours 15.2% 30.1% 3.6% 14.0%

Table : Tracklet accuracy
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Semantic Scene Understanding
[H. Zhang, A. Geiger and R. Urtasun, ICCV 2013]
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An autonomous system has to self-localize
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Motivation

Localization is crucial for autonomous systems

GPS has limitations in terms of reliability and availability

Place recognition techniques use image features or depth maps and a
database of previously collected images (e.g., Google car)

We develop an inexpensive technique for localizing to 3m in unseen regions
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Humans as an inspiration

Humans are able to use a map, combined with visual input and exploration,
to localize effectively

Detailed, community developed maps are freely available (OpenStreetMap)

How can we exploit maps, combined with visual cues, to localize a vehicle?

R. Urtasun ( UofT) Autonomous Driving Oct 3, 2014 26 / 34



Probabilistic Localization using Visual Odometry

Visual odometry provides a strong source of information for localization

Visual odometry has some issues

Over short time periods it can be noisy and highly ambiguous
Over long time periods it drifts when integrated

We adopt a probabilistic approach to represent and maintain this uncertainty

[Geiger et al, IV 2011]
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Probabilistic Localization using Visual Odometry

Maps can be considered as a graph

Nodes of the graph represent street segments
Edges represent intersections and allowed transitions between these
segments

Position is defined by the current street and the distance travelled d, and
orientation θ on that street
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Probabilistic Localization using Visual Odometry

The complete state includes

ut the current street segment
st = (dt , θt , dt−1, θt−1) the
current and previous position and
orientation on the street segment

Odometry observation
y1:t = (y1, · · · , yt)

Localization is formulated as posterior inference p(ut , st |y1:t)

∝ p(yt |ut , st)︸ ︷︷ ︸
likelihood

∑
ut−1

∫
p(ut |ut−1, st−1)︸ ︷︷ ︸

street transition

p(st |ut , ut−1, st−1)︸ ︷︷ ︸
pose transition

p(ut−1, st−1|y1:t−1)︸ ︷︷ ︸
previous posterior

dst−1
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Results
[M. Brubaker, A. Geiger and R. Urtasun, CVPR13 best paper runner up award]

2,1
50

km
 of ro
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Ambiguous Sequences
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Quantitative Experiments

Average
 Stereo Odometry
 Monocular Odometry
 Map Projection


Position Error
 3.1m
 18.4m
 1.4m


Heading Error
 1.3°
 3.6°
 -


Localization Time
 36s
 62s
 -


Initial Map Size (km of road)

50.0
10.0
2.0
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Conclusions

Autonomous systems should

Sense the environment: stereo, flow, layout estimation

Recognize the 3D world: detection, segmentation

Interact with it

We can do fairly complex reasoning with cheap sensors (i.e., 1 or 2 cameras)

Near Future:

Close the loop between localization and semantics: use of maps

Learning deep structure models

Online memory/computation bounded tracking

Real-time: HW accelerators
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