Visual Scene Understanding for Autonomous Driving

Raquel Urtasun

University of Toronto

Oct 3, 2014

R. Urtasun (UofT)

State of the art

• Localization, path planning, obstacle avoidance

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps

3D Laserscanner

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps

Goal: autonomous driving cheap sensors and little prior knowledge

3D Laserscanner

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps
- Goal: autonomous driving cheap sensors and little prior knowledge

Problems for computer vision

• Stereo, optical flow, visual odometry, structure-from-motion

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps
- Goal: autonomous driving cheap sensors and little prior knowledge

Problems for computer vision

- Stereo, optical flow, visual odometry, structure-from-motion
- Object detection, recognition and tracking

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps
- Goal: autonomous driving cheap sensors and little prior knowledge

Problems for computer vision

- Stereo, optical flow, visual odometry, structure-from-motion
- Object detection, recognition and tracking
- 3D scene understanding

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps
- Goal: autonomous driving cheap sensors and little prior knowledge

Problems for computer vision

- Stereo, optical flow, visual odometry, structure-from-motion
- Object detection, recognition and tracking
- 3D scene understanding

Benchmarks: KITTI Data Collection

- Two stereo rigs (1392×512 px, 54 cm base, 90° opening)
- Velodyne laser scanner, GPS+IMU localization
- 6 hours at 10 frames per second!

The KITTI Vision Benchmark Suite

First Difficulty: Sensor Calibration

- Camera calibration [Geiger et al., ICRA 2012]
- Velodyne \leftrightarrow Camera registration
- GPS+IMU \leftrightarrow Velodyne registration

Second Difficulty: Object Annotation

- **3D object labels:** Annotators (undergrad students from KIT working for months)
- Occlusion labels: Mechanical Turk

R. Urtasun (UofT)

One more Difficulty: Evaluation

• More than 200 submissions, 8000 downloads since CVPR 2012!

R. Urtasun (UofT)

An autonomous system has to sense the environment

3D Reconstruction

• Goal: given 2 cameras mounted on top of the car, reconstruct the environment in 3D.

Joint Stereo, Flow, Occlusion and Segmentation

- Slanted-plane MRF with explicit occlusion handling which also computes an over-segmentation of the image into superpixels
- MRF on continuous variables (slanted planes) and discrete var. (boundary, super pixel assignments, outliers)

• Energy that looks at shape, compatibility and boundary length

R. Urtasun (UofT)

Comparison to the State-of-the-art on KITTI

• Runtime on 1Core@3.5GHz for average resolution 1237.1 × 374.1 pixels

	Joint	Stereo only	Flow only
Total runtime	26.3 sec.	4.8 sec.	11.0 sec.

[K. Yamaguchi, D. McAllester and R. Urtasun, ECCV 2014]

An autonomous system has to understand the scene in 3D

3D Scene Understanding

Goal: Infer from a short (\approx 10s) video sequence:

- Geometric properties, e.g., street orientation
- Topological properties, e.g., number of intersecting streets
- Semantic activities, e.g., traffic situations at an intersection
- 3D objects, e.g., cars

Geometric Model

Static and Dynamic Observations

Observations

• **3D Tracklets**: Generate tracklets from 2D detections in 3D by employing the orientation as well as size of the bounding boxes

Static and Dynamic Observations

Observations

- **3D Tracklets**: Generate tracklets from 2D detections in 3D by employing the orientation as well as size of the bounding boxes
- Segmentation of the scene into semantic labels.

• Lines that follow the dominant orientations in the scene (i.e., reasoning about vanishing points).

Static and Dynamic Observations

Observations

- **3D Tracklets**: Generate tracklets from 2D detections in 3D by employing the orientation as well as size of the bounding boxes
- Segmentation of the scene into semantic labels.
- Lines that follow the dominant orientations in the scene (i.e., reasoning about vanishing points).

Observations

- **3D Tracklets**: Generate tracklets from 2D detections in 3D by employing the orientation as well as size of the bounding boxes
- Segmentation of the scene into semantic labels.
- Lines that follow the dominant orientations in the scene (i.e., reasoning about vanishing points).

Representation

• We will reason about dynamics in bird eye's perspective and static in the image.

Why high-order semantics?

• Certain behaviors are not possible given the traffic "patterns"

Why high-order semantics?

• Certain behaviors are not possible given the traffic "patterns"

• We learned those patterns from data. Example of **traffic patterns** learned from data for 4 way intersections

• The arrows represent our concept of lane

Why high-order semantics?

• Certain behaviors are not possible given the traffic "patterns"

• We learned those patterns from data. Example of **traffic patterns** learned from data for 4 way intersections

• The arrows represent our concept of lane

Joint Model

- Let a be the traffic pattern, and I_n the lane associated with a tracklet
- Road parameters are $\mathcal{R} = \{\theta, r, \mathbf{c}, w, \alpha\}$,
- The joint distribution is

$$p(\mathcal{E}, \mathcal{R}) = \underbrace{p(\mathcal{R})}_{\text{prior}} \underbrace{\left[\sum_{a} \prod_{n=1}^{N} \sum_{l_n} p(\mathbf{t}_n, l_n, a | \mathcal{R}) \right]}_{\text{Vehicle Tracklets}} \underbrace{p(v_f | \mathcal{R}) p(v_c | \mathcal{R})}_{\text{Vanishing Points}} \underbrace{p(\mathbf{S} | \mathcal{R})}_{\text{Semantic Labels}}$$

with \mathcal{E} the image evidence.

R. Urtasun (UofT)

Vanishing Points and Segmentation Likelihoods

$$p(\mathcal{E}, \mathcal{R}) = \underbrace{p(\mathcal{R})}_{\text{prior}} \underbrace{\left[\sum_{a} \prod_{n=1}^{N} \sum_{l_n} p(\mathbf{t}_n, l_n, a | \mathcal{R}) \right]}_{\text{Vehicle Tracklets}} \underbrace{p(\mathbf{v}_f | \mathcal{R}) p(\mathbf{v}_c | \mathcal{R})}_{\text{Vanishing Points}} \underbrace{p(\mathbf{S} | \mathcal{R})}_{\text{Semantic Labels}}$$

• Make geometry agree with the vanishing points

• Make geometry agree with the segmentation

• The joint distribution is

$$p(\mathcal{E}, \mathcal{R}) = \underbrace{p(\mathcal{R})}_{\text{prior}} \underbrace{\left[\sum_{a} \prod_{n=1}^{N} \sum_{l_n} p(\mathbf{t}_n, l_n, a | \mathcal{R}) \right]}_{\text{Vehicle Tracklets}} \underbrace{p(v_f | \mathcal{R}) p(v_c | \mathcal{R})}_{\text{Vanishing Points}} \underbrace{p(\mathbf{S} | \mathcal{R})}_{\text{Semantic Labels}}$$

with \mathcal{E} the image evidence, \mathcal{R} the intersection variables, I_n the lane index and *a* the traffic pattern

• The vehicle tracklets are a little bit more complicated than described so far

Tracklet model

We reason about:

- parked cars: in which spot?
- moving vehicles: in which lane and where in the lane are they?
- the traffic situation (i.e., traffic pattern)

Our tracklet formulation $p(\mathbf{t}_n, l_n, a | \mathcal{R})$ combines a HMM with a dynamical system with constraints

R. Urtasun (UofT)

Inference is done via Metropolis Hastings sampling

	Loca	ation	Orien	tation	Ove	rlap	Patter	n error
Method	3-arm	4-arm	3-arm	4-arm	3-arm	4-arm	3-arm	4-arm
[Geiger11]	4.3 m	5.4 m	3.3 deg	8.0 deg	58.7%	56.0%	-	-
Ours	5.7 m	4.9 m	2.4 deg	4.3 deg	61.5%	61.3%	18.2%	19.4%

Table : Geometry estimation

	T-L error (all)		T-L error (>10m)		
Method	3-arm	4-arm	3-arm	4-arm	
[Geiger11]	46.7%	49.9%	17.9%	30.1%	
Ours	15.2%	30.1%	3.6%	14.0%	

Table : Tracklet accuracy

Semantic Scene Understanding

[H. Zhang, A. Geiger and R. Urtasun, ICCV 2013]

An autonomous system has to self-localize

Motivation

• Localization is crucial for autonomous systems

- GPS has limitations in terms of reliability and availability
- Place recognition techniques use image features or depth maps and a database of previously collected images (e.g., Google car)
- We develop an inexpensive technique for localizing to 3m in unseen regions

- Humans are able to use a map, combined with visual input and exploration, to localize effectively
- Detailed, community developed maps are freely available (OpenStreetMap)
- How can we exploit maps, combined with visual cues, to localize a vehicle?

Probabilistic Localization using Visual Odometry

- Visual odometry provides a strong source of information for localization
- Visual odometry has some issues
 - Over short time periods it can be noisy and highly ambiguous
 - Over long time periods it drifts when integrated

We adopt a probabilistic approach to represent and maintain this uncertainty

[Geiger et al, IV 2011]

Probabilistic Localization using Visual Odometry

- Maps can be considered as a graph
 - Nodes of the graph represent street segments
 - Edges represent intersections and allowed transitions between these segments
- Position is defined by the current street and the distance travelled **d**, and orientation θ on that street

Probabilistic Localization using Visual Odometry

- The complete state includes
 - *u_t* the current street segment
 - s_t = (d_t, θ_t, d_{t-1}, θ_{t-1}) the current and previous position and orientation on the street segment

• Odometry observation $\mathbf{y}_{1:t} = (\mathbf{y}_1, \cdots, \mathbf{y}_t)$

• Localization is formulated as posterior inference $p(u_t, \mathbf{s}_t | \mathbf{y}_{1:t})$

$$\propto \underbrace{p(\mathbf{y}_t|u_t, \mathbf{s}_t)}_{\text{likelihood}} \sum_{u_{t-1}} \int \underbrace{p(u_t|u_{t-1}, \mathbf{s}_{t-1})}_{\text{street transition}} \underbrace{p(\mathbf{s}_t|u_t, u_{t-1}, \mathbf{s}_{t-1})}_{\text{pose transition}} \underbrace{p(u_{t-1}, \mathbf{s}_{t-1}|\mathbf{y}_{1:t-1})}_{\text{previous posterior}} d\mathbf{s}_{t-1}$$

[M. Brubaker, A. Geiger and R. Urtasun, CVPR13 best paper runner up award]

R. Urtasun (UofT)

Autonomous Driving

Ambiguous Sequences

Quantitative Experiments

Average	Stereo Odometry	Monocular Odometry	Map Projection
Position Error	3.1m	18.4m	1.4m
Heading Error	1.3°	3.6°	-
Localization Time	36s	62s	-

R. Urtasun (UofT)

Acknowledgements

- Marcus Brubaker
- Andreas Geiger
- Tamir Hazan
- Philip Lenz
- David McAllester
- Jian Peng
- Alex Schwing
- Christoph Stiller
- Koichiro Yamaguchi
- Hongyi Zhang

Autonomous systems should

- Sense the environment: stereo, flow, layout estimation
- Recognize the 3D world: detection, segmentation
- Interact with it

We can do fairly complex reasoning with cheap sensors (i.e., 1 or 2 cameras)

Near Future:

- Close the loop between localization and semantics: use of maps
- Learning deep structure models
- Online memory/computation bounded tracking
- Real-time: HW accelerators