
Mobile Object Detection through Client-Server based Vote Transfer

Shyam Sunder Kumar Min Sun Silvio Savarese
Dept. of Electrical and Computer Engineering, University of Michigan at Ann Arbor, USA

{shyamsk,sunmin,silvio}@umich.edu

Abstract
Mobile platforms such as smart-phones and tablet com-

puters have attained the technological capacity to perform
tasks beyond their intended purposes. The steady increase
of processing power has enticed researchers to attempt in-
creasingly challenging tasks on mobile devices with appro-
priate modifications over their stationary counterparts. In
this work we present a novel multi-frame object detection
application for the mobile platform that is capable of object
localization. Our work leverages the hough forest based ob-
ject detector introduced by Gall et al. in [10]. In our experi-
ments, we demonstrate that our novel, multi-frame general-
ization of [10] notably improves the detection performance.
We test the performance of the technique in variable res-
olutions, the applicability to several object categories and
different datasets. We implement the multi-frame detector
on a mobile platform through a novel client-server frame-
work that presents a sound and viable environment for the
multi-frame detector. Finally, we study implementations of
both single and multi-frame object detectors based on this
client-server framework on a mobile device running the an-
droid OS.

1. Introduction
In the past ten years, mobile phones have steadily out-

moded several conventional tools and devices by perform-
ing increasingly varied and complex tasks. Today it is pos-
sible to use a mobile device from finding a route to a des-
tination, reading a book, browsing the web, to organising
one’s day. In recent years vision based tools such as bar-
code scanners and landmark recognition systems have made
a positive impact on extending usability. Furthermore, sin-
gle instance recognition systems have been used for tasks
such as art (painting) recognition[22, 2], book cover and
CD album cover recognition[11]. These applications ex-
tract simple features on-device and use powerful hashing
strategies on a remote server to recover results. But such
methods cannot be generalized for generic object category
detection.

The ability to perform object detection on a mobile plat-
form opens the door to compelling applications such as vi-

(a) Single Frame (b) Multi Frame

Figure 1. Screenshots of our implementation of our proposed ob-
ject detection techniques on the Android OS

sual searching, object specific augmented reality, cataloging
objects in a scene, object category specific recommenda-
tion systems, etc. Despite the range of opportunities, im-
plementing an efficient and accurate algorithm for object
detection on a mobile phone is an open challenge. Ex-
isting state-of-the art object recognition methods such as
[7, 10, 6, 8, 13, 14] have been successfully applied to object
detection and have been shown to obtain reasonable recog-
nition rates. However, in practice, implementing and trans-
ferring such methods into a mobile platform is far from be-
ing an easy task. Mobile devices have limited memory and
computational power, whereas methods such as [7, 10] have
both significant computational and memory needs. Adapt-
ing these methods for a mobile phone therefore needs an ef-
fective split between the mobile phone (client) and a server.
Moreover conventional object recognition methods are not
designed to detect the object from multiple view-points.
This ability is critical when:

1. The object is three dimensional - unlike a painting, or
book cover, 3D objects vary considerably from differ-

1

ent view-points and often cannot even be viewed com-
pletely from a single vantage point.

2. Active Sensing scenarios are considered. In such sce-
narios the device can provide feedback to the user to
point the camera from the most informative view point.

In our work we present a technique for leveraging the
multiple frames towards improving object detection and fur-
ther applying it in a mobile platform assuming multiple
frames are extracted from a short video sequence. We de-
fine a short video sequence to consist of physically adjacent
frames where the object remains in the field of view of the
camera and smooth changes in the view of the object are
introduced(Figure 2). Notice that, while steady motion is
preferred, it is not instrumental for the technique to provide
improvements.

The multi-frame detection approach we present is a gen-
eralization of the Class Specific Hough Forests framework
for Object Detection proposed by Gall et al. [10] and the
Generalized Hough Transform [3] to allow patches in a sin-
gle image to vote for possible locations of the object in the
image. We extend this by generating votes from different
patches across multiple frames in a single frame through a
technique we introduce as vote transfer. In this technique
we associate patches across frames using tracking to link
the voting spaces of the separate frames. We experimen-
tally demonstrate that our multi-frame technique performs
notably better than the single-frame version.

We also implemented the multi-frame detector on a mo-
bile platform to demonstrate our multi-frame detector in its
natural used case. In this contribution, we present a divi-
sion of labor that requires a significant, non-trivial contri-
bution from the client-side and heavy processing from the
server (back-end). Through a number of timing analysis,
we present the near-practicality of such a system. In sec-
tion 5 we discuss this division of labor and in section 6 we
present the implementation details.

In summary, our main contributions are:

• A novel hough forest based multi-frame object detec-
tion framework.

• Vote Transfer - a novel technique to integrate the de-
tection process across multiple frames of a short video
sequence through tracking.

• A client-server framework with a non-trivial client to
perform object detection on the mobile phone which is
significantly more than a simple image/video capture
task.

• A comparative time performance study of three ver-
sions of the object detector - on a mobile device, on
a desktop machine, the proposed client-server frame-
work.

• An analysis of the effects of lowering image resolu-
tions on detection performance and resulting system
speed-up.

We next present work pertinent to the vote transfer tech-
nique in section 2. In section 2 we also discuss prior works
implementing object detectors on mobile devices as well as
other works that have explored client-server models. Sec-
tion 3 introduces the single frame detector that our work
builds on. Section 4 begins with the generalization of the
single frame approach and discusses the vote transfer tech-
nique in detail. Section 5 provides details of the mobile
application organization. Finally we provide experimental
analysis of both the vote-transfer technique and the mobile
application in section 6.

2. Related Work
Extending the Hough Transform to work with arbitrary

shapes was first introduced by D.H. Ballard in 1981 [3].
Since then it has been successfully applied to the problem
of single instance object detection [14] as well as object
category detection [13]. The Implicit Shape Model (ISM)
introduced by Leibe et al. [13] forms the basis for many
part based object detection algorithms. The ISM learns a
model of the spatial distribution of local patches with re-
spect to the object center. During testing the learned model
is used to cast a probabilistic vote for the location of the
object center. ISM builds a codebook of patches by clus-
tering patches based on appearance. Several modifications
to the ISM have been proposed over the years. Maji et al.
[16] propose a method that computes weights for the ISM
using a max-margin technique. To overcome the computa-
tional drawbacks of building a codebook using clustering,
Gall et al.[10] propose to learn a discriminative codebook
using a random forest that they call a Class-Specific Hough
Forest. Sun et al. [23] introduce the idea of Depth Encoded
Hough Voting, that incorporates depth information in train-
ing in order to learn a one-to-one mapping between scene
depth and patch scale. In our work, we do not introduce any
modifications to the training set-up introduced by [10].

Thomas et al. [24] extend the ISM for multi-view ob-
ject recognition, by learning many single view codebooks
that they interconnect via what they call activation links.
These activation links are obtained through the image ex-
ploration algorithm proposed by Ferrari et al. [9] for rec-
ognizing specific objects and establishing dense multi-view
correspondence across multiple views. In some sense, this
is similar to the idea we pursue in our multi-frame detector.
However, while they build associations between codewords
across multiple codebooks corresponding to multiple views,
we build association between patches observed across mul-
tiple frames using tracking in test-time. Other works, such
as [18, 21], present techniques that leverage videos, how-
ever these techniques are limited to single instance object

Figure 2. Short-Video-Sequence: This image-strip, an excerpt from the Car Show Dataset[19], demonstrates the definition of a short video
sequence. Note the presence of the object in all frames of the sequence, and the smooth view-point changes across frames.

recognition. Similar to us, the work by [17] also leverages
short video sequences. However, [17] focuses on estimating
poses of object categories.

On the mobile front the spread of works dealing with
object detection is limited. Hartl et al. [12] introduce an on-
device segmentation and detection technique for 2D objects
such as coins, keys, and screws. Belhumeur et al. demon-
strate an object recognition system for identifying herbaria
[4]. They implement their system on a head mounted dis-
play system. Also, both [12, 4] specialize in detecting 2D
object categories however, our work focuses on detecting
objects whose intrinsic shape is 3D.

[11] present a client-server approach to combined object
recognition and tracking where they perform server-side
recognition and recognition aided client-side tracking. [20]
present an on-device technique that can recognize multiple
objects based on tracking of objects based in videos. How-
ever both [20, 11] perform single instance object recogni-
tion; our work focuses on category level detection.

3. Single-Frame Detection
In this section we will briefly review the concept of

Hough Forests as introduced by [10] to localize the object.

3.1. Hough Forest
The Hough Forest technique introduced by [10] is used

to learn a direct mapping between the appearance of an im-
age patch and its hough-vote. This is accomplished effi-
ciently by using a random forest classifier. During training,
each tree in the Hough Forest is constructed based on a set
of patches P = {I, c, d}, where I is the appearance of a
patch, c is its class label and d is the distance between the
patch center and the object center. The class label c is ei-
ther 0 or 1 depending on whether the patch is a background
or foreground patch. Each leaf node in the Hough Forest
contains a collection of patches with similar characteristics
that were observed during training, along with their offset
vectors D = {di} and class labels C = {ci}.

Consider a patch P(y) = (I(y), c(y), d(y)) centered
at a location y in the test image. After passing it through
the random forest classifier, it is mapped to a leaf node

that has a probability p(c(y) = 1|I(y)) =

N∑
i=1

δ(ci=1)

N
(corresponding to the foreground) and a voting direction

p(d(y)|c(y) = 1, I(y)) ∝
N∑
i=1

(δ(d = di).δ(ci = 1)),

(wherein N is the total number of patches mapped to that

leaf node) which will exclude background patches. In
other words, patch P(y) votes for an object of class c(y)
at each location y−d(y) with probability p(d(y)|c(y) =
1, I(y)).p(c(y) = 1|I(y)).

Let us consider the event E(x) that the object lies at
location x in the image. We are interested in computing
the probability that the appearance of a patch I(y) yields
the event E(x) at a given position x in the image, i.e
p(E(x)| I(y)). This probability can be expressed as,

p(E(x)|I(y)) = p(E(x), c(y) = 1|I(y)), (1)

since patch y has to be a foreground patch (i.e c(y) = 1)
in order to cast a vote for the object. We can further expand
the term on the right hand side of equation 1 to obtain

p(E(x)|I(y)) = (2)

p(E(x)|c(y) = 1, I(y)).p(c(y) = 1|I(y)) =

p(d(y) = y−x|c(y) = 1, I(y).p(c(y) = 1|I(y)))

Both terms on the right hand side of equation 2 can be
obtained from the leaf node of the random forest into which
the patch P(y) falls. The first term gives the probabilis-
tic hough vote of the object center. This is obtained by a
Gaussian Parzen density estimator to estimate the voting
distribution (or alternatively a Mean Shift estimate) based
on the offset vectors D = {di} collected in the leaf during
training. The second term is obtained from the proportion
of object patches collected in the leaf during training (as
opposed to background patches). The votes from different
patches coming from the different random trees are added
up to get a final score that can be visualized in terms of a
heat map for the object location. More details are given in
[10].

4. Multi-Frame Detection
The main contributing factor for considering the use of

multiple frames for object categorization and detection is
the potential presence of extra evidence that is not present in
a single frame. The ready availability of such frames on mo-
bile platforms makes this extra evidence more compelling to
consider. However, the best approach to use this potentially
advantageous evidence is not immediately apparent. In this
section, we define multi-frame object detection problem and
then we explore an approach that leverages this definition.

Figure 3. This figure illustrates the concept of transferring votes
across frames. (left) Frame 1: A patch centered around the wheel
of the car casts a vote for the object center in Frame 1 in a di-
rection d1 indicated by the red arrow. The patch center moves a
distance t12 (indicated by the broken black arrow in Frame 2) be-
tween Frame 1 and Frame 2 to appear in the new position shown
in the left panel. (right) Frame 2: The box with the dotted red
outline shows the position of the patch in Frame 1, and the box
with the solid yellow boundary shows its new position in Frame
2. In order for the patch in Frame 1 to cast a vote for the object
in Frame 2, we displace its voting direction d1 by the amount t12
(indicated by the solid black arrow)

4.1. The Multi-frame Problem
Consider a short video sequence with F frames. De-

note a patch in frame i centred at location y as yi. Let
Y = {y1,y2, ...,yF}, be the set of patches that captures
the motion of patch y through the video sequence. Similar
to the single frame case , the existence of an object at loca-
tion x in some frame i can be quantified by the conditional
probability

p(E(xi)|I(Y)) (3)

Here I(Y) denotes the appearance information of some set
of patches Y as defined above. This formulation forms the
cornerstone of the vote transfer method.

4.2. Detection by Vote Transfer
Here detection is performed by the accumulation of

votes for the object center from several frames in-to
the reference frame i. Equation 3 can be re-written as∑
yjεY

p(E(xi)|I(yj)), which is equivalent to

∑
yjεY

p(E(xj + tji(x))|I(yj)) (4)

wherein tji(x) denotes the displacement of the object at lo-
cation x from frame i to frame j. This is a reasonable ap-
proximation since a) we are only interested in the centroid
of the object and b) we assume that the frames are derived
from a short video sequence.

Notice that, in practice, displacement tji(x), is not read-
ily available. Given the assumption of short video se-
quences, tji(x) can be approximated as the displacement
of the vote cast by patch y by its motion across frames
i and j (denoted by tji(y)). This results in a transfer of
votes from all frames of the video sequence to the refer-
ence frame i represented by

∑
yjεY

p(E(xj+tji(y))|I(yj)) =

p(E(xi)|I(Y)). In this way, votes are transferred from
frames j to frame i to detect the object in frame i.

Similar to the single frame case, we can expand the prob-
ability p(E(xi)| I(yj)) as

p(E(xi)| I(yj)) = p(E(xi), c(yj) = 1| I(yj)), (5)

since patch yj in frame j must be a foreground patch (i.e
c(yj) = 1) in order to cast a vote for the object. We can
further expand the term on the right hand side of equation 5
to obtain p(E(xi)| I(yj)) =

p(E(xi)| c(yj) = 1, I(yj)).p(c(yj) = 1| I(yj)) (6)

We can rewrite the terms on the right side of equation 6
as,

p(d(yj) + tji(y) = yj − xi| c(yj) = 1, I(yj))p(c(yj) = 1|I(yj)) (7)

Similar to the single frame case, the term p(c(yj) =
1|I(yj)) in equation 7 is the probability that patch yj is a
foreground patch given that it has an appearance I(yj), and
it can be obtained from the codeword to which the patch
is assigned. The first term in the right hand side of equa-
tion 6 is the probability that the object center xi in frame i
is at a distance d((yj) + tji(y)) away from the location of
the patch yj in frame j. Remember that d(yj) is the voting
direction of patch yj . tji(y) = yj − yi is the motion of
the patch y between frame j and frame i, and is obtained
via tracking. In order to calculate this term, we displace
the voting direction d(yj) of the patch yj by the amount of
translation of patch y between the two frames tji(y). This
concept is illustrated in Figure 3. The first term of equation
7 can then be approximated by the Gaussian Parzen density
estimator to estimate based on the displaced votes, similar
to the single frame case. More details on the Parzen density
estimator for a single image can be found in [10].

5. Mobile Application Blue-print
In this section we will describe our design for imple-

menting our object detection algorithm on the mobile de-
vice. In order for the application to run within a practical
amount of time and within the memory limits of the mobile
device, we propose splitting the task of detection between
the client and the server.

The mobile device is first used to capture either a sin-
gle image or a short video sequence. The image / frames
are then processed to extract the features used for object de-
tection. If a multi-frame detection is performed, then pixel
tracking is also completed on devices. This information is
packaged and transferred to the server-side over an HTTP
connection. On receipt of the features and tracking infor-
mation, the server runs the vote-transfer detector. The re-
sult of this process is sent back to the client and displayed

Figure 4. Client-Server Process Flow

to the user. The object detector runs detection over mul-
tiple categories in parallel. Data transmission between the
client and server is conducted through a simple structured
protocol. Figure 4 discusses the client-server process flow.

6. Experiments
In this section we present some qualitative and quantita-

tive results of our multi-frame approach. We also provide
timing analysis on both the mobile device (client) and desk-
top (server) to justify our proposed client-server model.

6.1. Datasets
We evaluate the performance of our algorithms to

detect objects using two datasets. The first is a
new multi-view dataset that we collected, and the sec-
ond is the Car Show Dataset introduced by Ozuysal
et al. in [19]. Please see the project web
page (http://www.eecs.umich.edu/vision/MVproject.html)
for more information about the dataset.

The new multi-view dataset contains videos of objects
such as car, mouse, bicycle, and keyboard. There are 10
different instances of each object category, and the video
sequences contain about 6000 frames per instance covering
the entire viewing circle (360 degrees of the azimuth pose
angle). Each video is sampled at approximately one image
per 10 frames. Each frame contains a single instance of the
object category. Additionally, the sampled images are ap-
proximately 0.60 (or 30 every 5 sampled frames) apart. The
dataset also contains bounding box information for the sam-
pled frames. For each object category, we train the Hough
Forest using 420 images of positive and negative instances
each including six instances, and use the remaining four in-
stances for testing. Also note that the objects are observed
under a cluttered background (Figures: 1,5). At no stage are
images or object instances from testing used in the train set
or vice-versa.

We also perform tests on the Car Show Dataset intro-
duced by [19]. This dataset contains 3600 images of 20 in-
stances of cars with one image about every 30. The images
are obtained as the cars are rotated on a turntable set-up.
This dataset is particularly relevant due to the real world
settings in which the images are recorded. Also, the larger
frame-frame angular distance allows to further test the capa-
bility of our method. We use a 50-50 evaluation approach

where we train the dictionary on ten instances with about
15 images per instance and the remaining ten instances are
used for testing.

Finally, in all tests performed on both datasets, a positive
detection is defined as 50% percent detection overlap with
the ground-truth bounding box.

6.2. Vote Transfer

As discussed in section 4, vote transfer is the technique
by which votes for the object centroid are transferred from
subsequent frames in a video sequence to the reference
frame. In this section we first discuss the implementation
details of vote transfer and then we perform a series of com-
parisons that - a) demonstrate the improved performance
of multi-frame detection, b) analyze tracking performance
and, c) evaluate detection performance across various im-
age scales.

6.2.1 Implementation Details
The vote transfer mechanism introduced in Section 4.2
is tested against the single frame detection technique by
[10]. During testing, we have a sequence of frames and
we are interested in transferring votes from patches across
this sequence of frames into a single frame that we call
the reference frame. In our experiments we transferred
votes from images that are 10, 20, 30, 40 and 50 frames
away from the reference frame. These are the subsequent
frames. After we accumulate all the votes in the refer-
ence frame, we add up the votes coming from all frames
by giving a smaller weight to votes that come from frames
that are farther away. Specifically, votes from patches in
the reference frame receive a weight of 1, and votes from
patches in the other frames receive a weight of 2−i/10 where
i = {10, 20, 30, 40, 50}. Finally we identify the location of
the object as the location with the maximum votes. These
weights may also be learnt which we believe is a potential
direction for future work.

6.2.2 Single vs Multi-frame Performance
Now we quantitatively compare the performance of the sin-
gle and multi-frame detectors. For the single-frame hough
voting evaluation, we use votes from patches in the refer-
ence frame only. Figure 6 shows the precision-recall of the
single and multi-frame detectors for the different object cat-
egories. Notice that for all object categories the multi-frame
detector with vote transfer outperforms the single-frame de-
tector.

Figure 5 shows a few qualitative examples of object
detection for different object categories. The upper row
shows the result of voting using patches in the reference
frame alone, i.e single-frame hough voting. The bottom
row shows results obtained by transferring votes from all
frames in the sequence into the reference frame. Notice the

(a) Mouse on multi-view dataset (b) Bicycle on multi-view dataset

(c) Car on multi-view dataset (d) Car Show Dataset

Figure 5. For each instance the top row shows the result of single-
frame hough voting on the reference frame. The bottom row shows
results after vote transfer. Images that are 10, 20, 30, 40 and 50
frames away from the reference frame are considered.

multi-frame detector is able to localize the object better than
the single-frame detector in many cases (Figure 5). This
demonstrates that having more frames available for the vot-
ing process yields a positive affect on the detection process.
Finally notice that the multi-frame technique performs well
even for small objects (such as the mouse).

6.2.3 Tracking Analysis

Next we determine the effect of tracking by varying the
separation between the reference frame and the subsequent
frames. Moreover, we compare two tracking approaches a)
Lucas-Kanade (LK) tracking (as implemented in OpenCV
2.1) [15] b) Large Displacement Optical Flow (LDOF) (as
implemented by authors) [5]. It is critical to note that votes
are transferred from the subsequent frames to the reference
frame by computing the motion vectors from a subsequent
frame to the reference frame. This prevents from accumu-
lating errors during inter-frame tracking. Additionally, we
do not use the votes from patches in the reference frame.
This allows us to isolate the contribution of tracking from
the rest.

This can also be understood as an evaluation of the de-
tection performance in the reference frame by votes from a
single subsequent frame j. Figure 7 shows a plot of the er-
ror as a function of the distance between the reference frame
and increasingly distant subsequent frames. In red is the er-
ror curve when LK is used to track patches across frames,
and in blue is the error curve for the case when LDOF is
used to track patches. The error in the LDOF is small when
the frames are close to each other, and it steadily increases
as the distance between the frames grows. The error in
LK increases gradually up to a point after which it remains

(a) Mouse (b) Car

(c) Bicycle (d) Car Show Dataset

Figure 6. Precision-Recall curves for (a) mouse, (b) cars, (c) bi-
cycles and (d) car - Carshow Data Set. Note that the multi-frame
detector outperforms the single frame in all object categories.

steady. The sources of error in the votes transferred are as
follows: 1) tracking is inherently noisy and this affects the
way patches across frames are tracked. 2), the motion of a
patch in the background of the image is unlikely to be the
same as the motion of a patch on the object. Thus votes
transferred from patches that belong to the background in
the image inject noise into the detection process. Due to the
relative stability of LK for larger inter-frame distances, we
use this in our implementation. Also, the time taken to com-
pute tracks (between two frames on a 2.4GHz triple core
desktop computer) using LK is a matter of milli-seconds;
the LDOF technique takes several seconds making it im-
practical.

Tracking using mobile based sensors: While mobile
phones are rich in sensors such as gyroscopes, accelerome-
ters and magnetic compasses, these sensors are not accu-
rate enough to enable robust motion tracking. Theoreti-
cally, converting accelerometer signals to motion tracking
is a double integral, but in practice, our tests demonstrated
that the sensor readings introduced considerable drift. This
led us to conclude that with the current state of these sen-
sors, it is not suitable to perform motion tracking accurately.

6.2.4 Performance vs Image Resolution

Next we determine the optimal image resolution for detec-
tion. Since time and memory requirements for feature ex-
traction increases with increase in the image resolution this
is a key experiment to determine feasibility on a mobile
platform. To do this, we run a performance analysis of the
detector in both single and multi-frame versions on varying
image resolutions. This experiment allows us to infer the
optimal image resolution that provides a suitably high per-
formance while minimizing the processing needs for feature
extraction (see Figure 8). Our experiments show that while

Figure 7. Tracking Error Plot vs Distance (with standard devia-
tion): The error calculated is the distance between the ground truth
bounding box center and the detected bounding box center. Here,
the data point is the average error and the two end points show one
standard deviation away from the average. We analyze LK (red
curve) tracking vs LDOF (blue). LDOF has smaller error when
the frame distance is small and increases steadily as expected. The
error in LK is high to begin with, and increases gradually up to a
point after which it almost stays steady. The error in the vote trans-
fer plays an important role in the performance of our multi-frame
detector.
best performance is achieved at a resolution of 640x480, the
performance at 320x240 is comparatively very reasonable,
whereas large deterioration in performance is observed at
160x120.

6.3. Mobile Platform
In this section we will first discuss some implementation

details. This is followed by timing analyzes on the device
only, desktop only, and the client-server model.

6.3.1 Implementation
We implement the object detector in three versions - a com-
plete on-device single frame detector, a client-server single-
frame application and lastly its multi-frame counter-part.

The complete on-device application waits for the user to
capture an image. Once the image is captured, the image
is processed for feature extraction through a pre-defined set
of scales. Detection across multiple image scales leads to a
scale invariant detector capable of identifying objects of dif-
ferent sizes. After this, the hough forest is loaded on-to the
system memory and the patches are passed through the for-
est for label assignment. The patches then cast their votes
for the object centre across all scales and possible aspect-
ratios of the object. This is followed by post-processing
involving non-maximum suppression of the voting space.
Scales and aspect ratios to be explored are predefined based
on object type. Also, the hough forests are trained and pre-
loaded on-to the device. In this on-device implementation,
we assume the object type is known and is capable of de-
tecting cars, mouses, and bicycles.

In the remaining two versions, detection is run parallely
for multiple objects. For both the client-server implementa-

Figure 8. Image Resolution vs Detection Performance

tions, feature extraction across various scales is performed
on device. Patch labeling, voting and post-processing are
performed on the server-side. Additionally, for the multi-
frame approach, tracking through LK tracking is performed
on device as well. Finally, only extracted features from
appropriate frames of the captured video (selected evenly
across the video) are sent to the server side. This reduces
the amount of bandwidth required to transfer information.

6.3.2 Client-Server Analysis
In this section we will demonstrate the merit of a client-
server system through some experiments. The tests where
conducted on a Motorola Atrix (device specifications are
available in [1]) running Android 2.2. on images of size
640x480 for detection. This was the best mobile configu-
ration at the time of implementation. LK tracking is per-
formed at the original image scale. Feature extraction re-
covers a 16-channel feature matrix and tracking consists of
a 2-channel displacement matrix. We also test on a desktop
machine with 2.4 GHZ triple core.

Tab.1 shows the times for traversing the random forest
and conducting hough voting on both the mobile device
and desktop machine. The detection process is significantly
slower on device (∼3 to 4 times slower). The reason for
the slower performance on the mobile platform is two fold:
a) mobile devices have a slower, less powerful processor,
and b) mobile devices lack a floating point core to per-
form floating point computations required for the detection
step. We argure that this performance deficit justifies the use
of a client-server model. In contrast to the mobile imple-
mentation, the client-server implementation (in Tab.2) sig-
nificantly improves the performance from ∼6s (on device)
to ∼3s for exploring a single scale on a single frame and
traversing 10 trees.

Time (ms) Random Forest Hough Voting Total
on device 19609 52666 ∼70s

on desktop 6349 13872 ∼20s
Table 1. Time break down of the detection process on a single
frame exploring 8 scales and traversing 10 trees.

Time (ms) LK FE CS RF HV SC Total
1 frame N/A 300 650 456 1453 ~20 ~2.9s
5 frames 2430 1700 1200 6735 16773 ~20 ~28.9s

Table 2. Time break down of the detection process exploring 1
scale and traversing 10 trees. LK, FE, CS, RF, HV, and SC stand
for Lucas-Kanade tracking, Feature Extraction, communication
from Client to Server, traversing Random Forest, Hough Voting,
communication from Server to Client, respectively.

7. Discussion
In this work we demonstrate a new approach to multi-

frame object detection using Hough Forests and demon-
strate through experiments the stability of this approach.
The significance of this method is its ability to bring evi-
dence from minor changes in views to improve object de-
tection. To evaluate our technique, we introduce a new
multi-view dataset that consists of 3600 videos of three ob-
ject categories. We further tested on the car-show dataset
introduced in [19]. In addition to detection analysis, we
also compare two tracking approaches and study accuracy
by varying frame distances and also comment on time taken
to compute. Through a study of performance on different
image resolutions we further demonstrate the improved per-
formance the multi-frame method provides over its single-
frame counter-part. Finally, we demonstrate a realistic im-
plementation of this technique on a mobile platform using a
client-server approach.

There remains a rich scope for future work to add to our
contribution. First, a more accurate and faster tracking tech-
nique will expand the applicability of this technique to be-
yond minor view changes. Secondly, this work has a nat-
ural extension leading to include pose estimation; however
to use multiple views for this requires understanding how
view-point changes can foster pose estimation. Also, com-
pression of the feature and tracking matrices can aid reduc-
ing transmission time for the mobile implementation.

8. Acknowledgements
We acknowledge the support of a Google Research

Award and the Gigascale Systems Research Center. We also
would like to thank the contribution of Anush Mohan for his
work on vote transfer and Giovanni Zhang for his work on
the mobile implementation.

References
[1] Motorola atrix 4g - dual-core phone - android smartphone -

tech specs - motorola mobility, inc. 7
[2] Google goggles. Web, 2009. 1
[3] D. H. Ballard. Generalizing the hough transform to detect

arbitrary shapes. Pattern Recognition, 13(2):111–122, 1981.
2

[4] P. Belhumeur, D. Chen, S. Feiner, D. Jacobs, W. Kress,
H. Ling, I. Lopez, R. Ramamoorthi, S. Sheorey, S. White,
et al. Searching the world’s herbaria: A system for visual
identification of plant species. In ECCV, 2008. 3

[5] T. Brox, C. Bregler, and J. Malik. Large displacement optical
flow. In CVPR, 2009. 6

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, Washington, DC, USA, 2005.
IEEE Computer Society. 1

[7] P. F. Felzenszwalb, R. B. Girshick, and D. Mcallester. Cas-
cade object detection with deformable part models. In CVPR,
2010. 1

[8] R. Fergus, P. Perona, and A. Zisserman. A sparse object cate-
gory model for efficient learning and exhaustive recognition.
In CVPR, 2005. 1

[9] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of
adjacent contour segments for object detection. IEEE Trans.
Pattern Anal. Mach. Intell., 30(1):36–51, 2008. 2

[10] J. Gall and V. Lempitsky. Class-specific hough forests for
object detection. In CVPR, 2009. 1, 2, 3, 4, 5

[11] S. Gammeter, A. Gassmann, L. Bossard, T. Quack, and
L. Van Gool. Server-side object recognition and client-side
object tracking for mobile augmented reality. In CVPRW,
2010. 1, 3

[12] A. Hartl, C. Arth, and D. Schmalstieg. Instant segmentation
and feature extraction for recognition of simple objects on
mobile phones. In CVPRW, 2010. 3

[13] B. Leibe, A. Leonardis, and B. Schiele. An implicit shape
model for combined object categorization and segmentation.
In ECCVW, 2004. 1, 2

[14] D. G. Lowe. Local feature view clustering for 3D object
recognition. In CVPR, 2001. 1, 2

[15] B. Lucas, T. Kanade, et al. An iterative image registration
technique with an application to stereo vision. International
joint conference on artificial intelligence, 1981. 6

[16] S. Maji and J. Malik. Object detection using a max-margin
hough tranform. In CVPR, 2009. 2

[17] L. Mei, J. Liu, A. Hero, and S. Savarese. Robust object pose
estimation via statistical manifold modeling. In ICCV, 2011.
3

[18] N. Noceti, E. Delponte, and F. Odone. Spatio-temporal con-
straints for on-line 3D object recognition in videos. Com-
puter Vision and Image Understanding, 2009. 2

[19] M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for cate-
gory specific multiview object localization. In CVPR, 2009.
3, 5, 8

[20] M. Raptis and S. Soatto. Tracklet descriptors for action mod-
eling and video analysis. In ECCV, 2010. 3

[21] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Seg-
menting, modeling, and matching video clips containing
multiple moving objects. IEEE transactions on pattern anal-
ysis and machine intelligence, 2007. 2

[22] B. Ruf, E. Kokiopoulou, and M. Detyniecki. Mobile museum
guide based on fast SIFT recognition. Adaptive Multimedia
Retrieval. Identifying, Summarizing, and Recommending Im-
age and Music, 2010. 1

[23] M. Sun, G. Bradski, B. Xu, and S. Savarese. Depth-encoded
hough voting for joint object detection and shape recovery.
In ECCV, 2010. 2

[24] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, B. Schiel, and
L. Van Gool. Towards multi-view object class detection. In
CVPR, 2006. 2

