
Toward Coherent Object Detection And Scene Layout Understanding

Sid Ying-Ze Bao Min Sun Silvio Savarese
Dept. of Electrical and Computer Engineering, University of Michigan at Ann Arbor, USA

{yingze,sunmin,silvio}@eecs.umich.edu

Abstract

Detecting objects in complex scenes while recovering the
scene layout is a critical functionality in many vision-based
applications. Inspired by the work of [18], we advocate
the importance of geometric contextual reasoning for ob-
ject recognition. We start from the intuition that objects’
location and pose in the 3D space are not arbitrarily dis-
tributed but rather constrained by the fact that objects must
lie on one or multiple supporting surfaces. We model such
supporting surfaces by means of hidden parameters (i.e.
not explicitly observed) and formulate the problem of joint
scene reconstruction and object recognition as the one of
finding the set of parameters that maximizes the joint proba-
bility of having a number of detected objects on K support-
ing planes given the observations. As a key ingredient for
solving this optimization problem, we have demonstrated a
novel relationship between object location and pose in the
image, and the scene layout parameters (i.e. normal of one
or more supporting planes in 3D and camera pose, loca-
tion and focal length). Using the probabilistic formulation
and the above relationship our method has the unique abil-
ity to jointly: i) reduce false alarm and false negative ob-
ject detection rate; ii) recover object location and support-
ing planes within the 3D camera reference system; iii) infer
camera parameters (view point and the focal length) from
just one single uncalibrated image. Quantitative and qual-
itative experimental evaluation on a number of datasets (a
novel in-house dataset and label-me[28] on car and pedes-
trian) demonstrates our theoretical claims.

1. Introduction
When we observe a complex scene such as an office or

a street, it is easy for our visual system to recognize the
objects and infer their spatial organization in the environ-
ment. Objects do not appear in arbitrary locations: it is very
unlikely to observe a monitor floating in the air or a car
hanging from a building. Objects are rather organized in
the physical space in consistent geometrical configurations:
their locations and poses obey the law of physics (objects
lie on supporting planes in stable configurations) and fol-
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Figure 1. A conceptual illustration of the flowchart of our algo-
rithm. (a) Original input image with unknown camera parame-
ters; (b) Detection candidates provided by a baseline ”mug” de-
tector; (c) The 3D layout. The figure shows the side view of the
3d reconstructed scene. The supporting plane is shown in green.
Dark squares indicate the objects detected and recovered by our
algorithm; light squares indicate objects detected by the baseline
detector and identified as false alarms by our algorithm; (d) Our
algorithm detects objects and recovers object locations and sup-
porting plane (in gold color) orientations and locations within the
3D camera reference system from one single image. We show
only a portion of the recovered supporting plane for visualization
purposes.

low the conventions of human behavior. It is clear that when
humans observe the environment, such constraints will help
reinforce the process of joint recognition and scene layout
recovery [27]. The recognition of objects with the esti-
mate of their location, scale and pose helps infer the spa-
tial properties of the environment (e.g., the location and ori-
entation of the surface where objects lie), and in turn the
scene layout provides strong spatial contextual cues as for
where and how objects are expected to be found. Contribu-
tions in computer vision for the past decade have followed
the common paradigm of recognizing objects in isolation
[33, 10, 9, 21, 8], regardless of the geometrical contextual
cues. It is indeed true that objects can be in general rec-



ognized even if no information about the scene layout is
provided. However, we claim that joint object recognition
and scene reconstruction are critical if one wants to obtain
a coherent understanding of the scene as well as minimize
the risk of detecting false positive examples or missing true
positive ones. This ability is crucial for enabling higher
level visual tasks such as event or activity recognition and in
applications such as robotics, autonomous navigation, and
video surveillance.

The intuition that recognition and reconstruction are mu-
tually beneficial has been initially explored in early works
of computer vision [25, 2, 3, 4, 13, 15], and recently revi-
talized in [18, 14, 22, 5, 20, 32, 6, 30]. In [18], the pro-
cess of detecting objects in a complex scene is enhanced by
introducing the geometrical contextual information of the
scene layout [17] (e.g., vertical surfaces, ground horizontal
planes, etc). More explicit reasoning on the relationship be-
tween supporting planes and objects has been investigated
in [19, 16]. In this work we too advocate the importance
of geometrical contextual reasoning for object recognition
and focus on demonstrating that the geometrical contextual
cues provided by object location and pose can be used, in
turn, to reinforce the detection and prune out false alarms.
Our key idea is that objects’ locations and poses in the 3D
space are not arbitrarily distributed but rather constrained
by the fact that objects must lie on one or multiple sup-
porting surfaces. We model such supporting surfaces by
hidden parameters (i.e. not explicitly observed) and seek a
configuration of objects and supporting surfaces in the 3D
space that best explains the observations, including the es-
timation of each object’s location, scale and pose. At this
end, we leverage on recent methods for detecting multi-
category objects and estimating their poses accurately from
a single image [29, 23, 31, 26, 1, 7]. Unlike [18], where
contextual information was provided by the explicit esti-
mation of surface orientation using the geometric context
operator [17], we use the objects themselves for extracting
contextual cues. Thus, we do not require supporting planes
or other scene surfaces to be visible or detectable in order
to perform the joint recognition and reconstruction. Rather,
supporting planes are implicitly estimated from the obser-
vation of the object location and pose in the image. This is
conceptually similar to previous work on shape from texture
[12, 24] where each texture element can be interpreted as an
object. Unlike [18], we only hypothesize zero skew and unit
pixel ratio camera model with unknown focal length, and do
not make assumptions on the camera-to-ground distance or
camera view angle. This allows our algorithm to work well
on both outdoors and indoors scenes.

The main contributions of our work include: 1. A novel
representation that can jointly model 3D objects location
and 3D supporting surfaces (planes) from the observations
from a single image. Concretely, the problem of joint scene
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Figure 2. If the normal of a plane is n, objects lying on such plane tend
to share the same normal direction n1//n. Objects whose normal is not
parallel to n (e.g. n2 and n3) are unlikely to sit on that supporting plane.

reconstruction and object recognition is formulated as find-
ing a set of parameters that maximize the joint probability of
having a number of detected objects on K supporting planes
given the observations (Sec.2). 2. A relationship that con-
nects the 2D image observation of object location and zenith
angle pose with the 3D supporting planes’ normals and the
camera focal length parameter. We prove that this relation-
ship yields necessary conditions for estimating the camera
focal length and the supporting planes’ 3D orientations and
locations (in the camera reference system) from the loca-
tions and zenith poses of at least 3 objects in the image.
The relationship is general in that objects do not necessar-
ily need to lie on the same supporting plane as long as their
supporting planes are parallel with respect to each other and
the objects are not collinear (Sec.3.1). 3. A framework that
uses the above relationships and a probabilistic formula-
tion to jointly detect objects (so as to reduce false alarm
and false negative rates) and recover (within the camera
reference system) objects’ 3D locations, the 3D supporting
planes, and the camera focal length parameter. All of above
outcomes are merely based on one single semi-calibrated
image (Sec.2). Experimental evaluation on a number of
datasets (a novel in-house dataset and the car and pedestrian
Label-Me dataset[28]) demonstrates our theoretical claims
(Sec.4).

2. Modeling Objects and Scene Layout
Given an image portraying a number of objects, our work

proposes a new model for jointly recognizing objects in the
scene and recovering the scene layout that best ”explains”
the evidence measured in the image. In this paper, the
term ”scene layout” indicates: i) the object’s 3D locations
and poses in camera reference system; ii) their supporting
plane’s 3D orientation and location in camera reference sys-
tem; iii) camera focal length parameter. In this section we
will first introduce notations and assumptions and then for-
mulate the problem.

2.1. Assumptions and Notations
We assume that each object lies on a supporting plane at

an up-right pose. This assumption is satisfied in most real
world scenes. For example, a car is usually touching the
ground by four wheels rather than only two and a wineglass
is usually standing vertically rather than obliquely (Fig.2).
This is consistent with the common observation that objects
rarely float in the air or occupy unstable poses. Further-
more, if multiple supporting planes co-exist in one image,
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Figure 3. (a): Three perpendicular directions characterize the pose of an
rigid object in a given reference system. n is defined as the object’s normal.
(b): Definition of zenith angle ϕ and azimuth angle θ, given the object’s
pose in the camera reference coordinates.
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Figure 4. Geometrical relationships of ϕ, r, d, h and n

we assume that these planes are all parallel to each other.
This parallel relationship of planes holds for most daily-life
scenes. Notice that we are not assuming the camera must
be ”up-right” with respect to the supporting surfaces.

Plane in 3D. A plane in 3D has three degrees of free-
doms. Hence, it can be parameterized by its surface normal
n (Fig.4) and its distance h to the origin of the coordinate
system (i.e. the camera).

Object in 3D. We define the parametrization to identify
an object’s location and pose in 3D coordinate system. As-
suming that an object is enclosed by the tightest bounding
cube lying on the supporting plane (Fig.3(a)), the object 3D
location O can be specified by knowing the centroid of the
3D bounding box. Furthermore the object’s pose can be de-
fined by the three bounding box’s perpendicular surfaces’
normal n, q and t (Fig.3(a)). As discussed above, we as-
sume all objects’ up-down direction n should be equal to
supporting plane’s normal. Let the unit view sphere asso-
ciated to an object be the collection of viewpoints equally
distant from the object. In the view sphere of an object,
let r be the ray that connecting O and the camera center
(Fig.3(b)). Let zenith angle ϕ be the angle between the ray
r and n (Fig.3(b) and Fig.4). Define azimuth angle θ be
the angle formed by object’s frontal vector q and a vector
rs that is the projection of the ray r onto the plane perpen-
dicular to n (i.e. supporting plane). We denote by ϕ the
measured zenith pose from image, and by ϕ̂ the estimated
zenith pose consistent with the underlying surface layout.
We will explain in details how to compute ϕ̂ and measure ϕ
in Sec.3.1.

Object in 2D. An object in the image plane is uniquely
identified by a bounding box bbox tightly enclosing the ob-
ject in 2D. We define bbox by its center (u, v), the height h,
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Figure 5. Graphic model of conditional independence for supporting
plane parameters and detection result, where oi is partially observed and
ei fully observed. Details in Sec.2.2.

and width w in image coordinate (Fig.3(b) and Fig.7).
Candidate Detection. We assume a number of object

class detectors are available and each detector returns a
number of candidate detections m, where each m is defined
by a bounding box bbox and the estimated object pose rep-
resented by the zenith angle ϕ and azimuth angle θ. Thus,
m = {bbox, ϕ, θ} (Fig.3(b) and Fig.7).

True-Positive Flag. We assign a true-positive flag t to
each detection result. t = 1 if a candidate detection is asso-
ciated to the true object category, and t = 0 if a candidate
detection is wrongly indicating the presence of an object
from incorrect categories or just background. Given an im-
age measurement (i.e. portion of the image that is used by
detector to assess whether an object class has been detected
and may yield a detection m or not), the detector returns a
confidence score indicating how likely a detection is truth
positive, i.e. t = 1.
2.2. Joint Model of Objects and Supporting Planes

We propose a probabilistic model which incorporates the
interaction between objects and supporting plane. The ad-
vantage is that the estimation of both candidate detections
and the underlying geometry is more accurate than esti-
mating each term independently. For simplicity, we denote
scene information S = {n, h, f} where n and h is support-
ing plane’s parameters and f is the camera focal length. We
formulate the joint probability of the candidate detections
o = {oi} = {mi, ti}, image evidence E = {ei}, and scene
information S following the graphical model in Fig.5 as

p(o,E, S) = p(S)
N∏
i=1

p(oi|S)p(ei|oi)

Since the probability of a bounding box (given only
geometrical constraint), regardless of whether it is fore-
ground or background, can be treated as a constant, we
have p(oi|S) = p(ti|mi, S)p(mi|S) ∝ p(ti|mi, S). Con-
sequently,

p(o,E, S) ∝ p(S)
N∏
i=1

p(ti|mi, S)p(ei|mi, ti)

Each term is described as follows:
p(S) is the prior of scene information, which may be

considered to uniformly distribute within a reasonable range
of n, h and f .

p(e|t,m) is related to the detection result’s confi-
dence. In this paper we assume p(m, t) and p(e)
satisfy uniform distribution, therefore p(e|t,m) =
p(t,m|e)p(e)/p(t,m) ∝ p(t,m|e), where p(t,m|e) is the
detection’s confidence returned by the detector.



p(t|m,S) is the probability that the detection is true pos-
itive, given the candidate detection m and scene information
S.

One contribution of our work is to estimate p(t|m,S)
with the help of two geometrical relationships: 1. Relation-
ship between focal length f , zenith angle ϕ and support-
ing plane normal n. 2. Relationship between the object-to-
plane distance d, object’s 3D coordinates O, plane’s normal
n, and camera-to-plane distance h (Fig.4). In Sec.3 we will
explain in details these relationships. Here, we formulate

p(t = 1|m,S) = p(t = 1|d)p(t = 1|ϕ− ϕ̂) (1)

In other words, rather than using S directly, we use d and
ϕ̂ to determine if the candidate detection m is true. We as-
sume Gaussian distribution p(t = 1|d) = N(d; 0, σd), and
p(ϕ− ϕ̂) = N(ϕ− ϕ̂; 0, σϕ), where ϕ̂ is the inferred zenith
and ϕ is the measured zenith from image. Thus, ti = 1
is possible only if the scale of the bounding box and the
predicted pose of the detection are consistent with the sup-
porting plane.

To sum up, in our problem, unknowns are {ti}, S, and
measurements are {mi} and {p(ei|oi)} given by detector.
To simultaneously estimate the scene information S, and the
true-positive flag {ti} of each candidate detection, we want
to find S and {ti} such that the joint probability p(o,E, S)
is maximized. The problem is equivalent to find S and {ti}
via the following optimization problem:

arg max
S,{ti}

ln p(S) +
N∑
i=1

[ln p(ti|mi, S) + ln p(ei|ti,mi)] (2)

2.3. Solving the Optimization
In this section we solve the optimization problem of

Eq.(2) in Sec.2.2. Define z(S) as

z(S) = max
{ti}

N∑
i=1

[ln p(ti|mi, S) + ln p(ei|ti,mi)]

=

N∑
i=1

{
max
ti

[ln p(ti|mi, S) + ln p(ei|ti,mi)]

}
For a fix value of S, the value of each terms in the above

summation can be calculated independently. Hence, the
best global configuration of {ti} given S can be found after
N comparisons of ln p(ti = 1|mi, S) + ln p(ei|ti = 1,mi)
with ln p(ti = 0|mi, S) + ln p(ei|ti = 0,mi). Therefore,
{ti} can be computed as the function of S

t∗i = argmax
ti

ln p(ti|mi, S) + ln p(ei|ti,mi)

Eq.(2) is equivalent to
argmax

S
[ln p(S) + z(S)] (3)

We propose to solve Eq.(3) by searching on a large but
finite set of S to find the optimal S∗. This can be computed
almost in real-time by CUDA paralleling programming.

2.4. Extension to Multiple Planes
The above approach solves single plane problem by ob-

taining the highest log likelihood score. This approach can
be extended to handle the case of multiple supporting planes
by carrying it on iteratively. First, we employ this approach
to find the best plane configuration S and then we remove
the corresponding {t|t = 1} given S. Next, the algorithm
runs again for the remaining detection candidates. If the
number of planes K is known before-hand, the algorithm
ceases after desired number of planes are found. If the num-
ber of planes K is unknown, we stop the algorithm after the
increment of the overall log likelihood falls under a thresh-
old. Notice that, since all the planes will have the same
normals, the ”at least three objects” requirement (Sec.3.1)
is no longer necessary for all the other planes except the
first one.

3. Relating Camera Measurements and Sup-
porting Planes

In this section we explain in details the computation
of p(t|m,S) in Sec.2.2. As Eq.(1) We have decomposed
p(t = 1|m,S) = p(t = 1|d)p(t = 1|ϕ − ϕ̂). In Sec.3.1
we will derive the relationship among the estimated zenith
angle pose ϕi of an object in the image plane, the support-
ing plane normal n and camera focal length f . We show
that by measuring ϕi of at least three non-collinear objects,
we can estimate f and n from a single image. Notice that
in order for this result to be true, objects are not necessarily
required to lie on a single supporting plane, but each object
can have its own supporting plane as long as all the planes
are parallel. This result is one of the main contributions of
our paper and provides sufficient conditions for estimating
p(ti|mi, S). In Sec.3.2, we will explain how to locate an
object O in 3D and establish a relationship between O, h, d
and n.

3.1. Relationship Between Focal Length and Sup­
porting Plane Normal

We adopt homogeneous coordinates to represent objects
in 3D and in the image plane coordinates. Let (ũ, ṽ, 1) be
the homogeneous coordinates of the object projection in the
image plane. We assume that the camera is semi-calibrated.
That is, we assume that the camera center (u0, v0) is known,
the pixel ratio α = 1 and the camera has zeros-skew.
These are reasonable assumptions that hold in most prac-
tical cases. By translating any point in image plane by
(ui, vi) = ((ũi, ṽi) − (u0, v0))

T , we write the camera in-
trinsic parameter matrix as K = diag(f, f, 1).

Let the line of sight ri be the line connecting the camera
center and an object Oi, which passes through an object’s
location (ui, vi, f) in the image. Then the direction of the
line of sight ri in camera coordinates is (ui/f, vi/f, 1). Let
n = (n1, n2, n3) denote the supporting plane’s normal in
camera coordinates. si and n are shown is Fig. 4. Notice n
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Figure 6. (a) Histogram of the actual error of the measurement of object
zenith angle ϕ. The Y axis is the fraction of testing samples that have
certain error. The X axis is error in degree. (b)(c) Error analysis of equation
5. X axis is the variance of Gaussian noise in degree. (b) Y axis is ef =

|(f − f̂)/f |. (c) Y axis is en = |arccos(n · n̂)| in degree. This figure is
best viewed in color.

must satisfy n2
1 + n2

2 + n2
3 = 1. Then we have

(ui, vi, 1)

 n1

n2

n3f

 = − cosϕi

√
u2
1 + v21 + f2 (4)

Hence, using Eq.(4), the key term ϕ̂ in Eq.(1) can be
computed given n1, n2, n3, and f , i.e. part of S.

Measure Zenith Angle From Image. It is clear that our
formulation relies on the measurement of object zenith an-
gles in the image plane. Recently, a number of techniques
such as [31, 23, 29, 1] have been proposed to estimate ob-
ject pose from single images. We used an adapted version
of [31] to measure zenith angles ϕ from the image. We have
found that this adapted pose detector yields satisfactory re-
sults when validated on our in-house dataset (Fig.6). The
standard deviation of zenith angle measurement is 8.4◦.

Estimate 3D Plane Orientation via Object Zenith An-
gles. In this section, we show that supporting plane’s nor-
mal and camera focal length can be estimated from the
object’s zenith angle ϕ, location (u, v) from just one sin-
gle image. If a total number of N measurements ϕi, ui, vi
(i = 1...N ) are available, following Eq.(4) we obtain:


u1 v1 f
u2 v2 f
u3 v3 f

...
uN vN f


 n1

n2

n3

 =



− cosϕ1

√
u2
1 + v21 + f2

− cosϕ2

√
u2
2 + v22 + f2

− cosϕ3

√
u2
3 + v23 + f2

...

− cosϕN

√
u2
N + v2N + f2


(5)

This equation allows us to solve {f, n1, n2, n3} from ob-
jects’ measurements ϕi, ui, vi (i=1. . . N) of just one single
image. The following proposition 1 gives conditions for the
existence of a solution of Eq.(5).

Proposition 1: Equation (5) admits one or at most two
non-trivial solution of {f, n1, n2, n3} if at least three non-
aligned observations (ui, vi) (i.e. non-collinear in the im-
age) are available. If the observations are collinear, then
Eq.(5) has infinite solutions.

1Please see authors’ project webpage for the complete proof of this
proposition
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Figure 7. An illustration of a detected object and its corresponding 3D
pose. Given object’s image bounding box and estimated pose, its distance
to the camera can be estimated using the procedure in Sec.3.2.

Equation (5) guarantees that as long as at least 3 objects
do not lie on the same line in the image, it is possible to ex-
press camera focal length and supporting planes normal as a
function of object locations and zenith pose measurements
in the image. Notice that this equation does not assume
all objects are placed on one unique plane and it also does
not make the assumption that the camera has no in-plane-
rotation (tilt).

Error Analysis. We use numerical simulation to ana-
lyze the robustness of the estimation of f and n by solving
Eq.(5) as the function of noise in the measurements ϕ. For
a total number N of objects, first a random set of object’s
bounding box {ui, vi}, plane’s normal n and focal length f
is simulated. Then the corresponding object’s zenith angle
ϕi is computed by Eq.(4). Next we add Gaussian noise w

of variance σ to the object’s zenith ϕ̃i = ϕi + w. Conse-
quently, given {ϕ̃i} and {ui, vi}, we compute plane’s nor-
mal n̂ and focal length f̂ , by solving Eq.(5). Since Eq.(5)
cannot be solved in closed form, we employ the Levenberg-
Marquardt method to solve it. Fig.6(b) and Fig.6(c) shows
the mean value of the absolute errors v.s. object’s number
and noise level: Fig.6(b) is ef = |(f − f̂)/f | and Fig.6(c)
is en = |arccos(n · n̂)|. These plots relate the accuracy in
estimating n and f as function of the errors in measuring
the zenith ϕ. Given that our detector returns ϕ with an er-
ror of about 10◦ (Fig.6(a)), Fig.6(b) and Fig.6(c) show that
corresponding error in estimating n and f is still reason-
able. Notice that we do not use Eq.(5) while solving the
optimization in Sec.2.3.

3.2. Locating Objects in 3D
In this section, we explain the relationship between S

and d, starting from locating objects in the 3D camera ref-
erences system. Denote by ∥r∥ the distance between the
object location O and the camera. It is impossible to es-
timate ∥r∥ without any prior knowledge about the camera
or the object if only a single image is available. However,
assuming that we have some prior knowledge on the 3D
objects’ real size, the object distance ∥r∥ can be estimated
from the object scale in the image by means of an inversely
proportional relationship. Specifically, if an object’s image
bounding box’s height and width are h and w, its category
is c, and its estimated pose is θ and ϕ, we approximate its
distance ∥r∥ as a linear combination of 1

w and 1
h

∥r∥ ≃ (α(θ, ϕ, c)
1

w
+ β(θ, ϕ, c)

1

h
) · f (6)

where α and β are functions of object’s pose and class la-



bel and f is the focal length. α and β are related to physical
3D shape of the object category. A more precise modeling
of such relationship goes beyond the scope of this paper.
We instead use linear regression to learn α and β for each
set of θ, ϕ, c in the training set where ground truth pose and
distance ∥r∥ are available (Fig.7). As a result, given can-
didate object m = {bbox, θ, ϕ} and its category c, its 3D
coordinate can be estimated in the camera coordinates

O w ∥r∥√
(u/f)2 + (v/f)2 + 1

 u/f
v/f
1


This allows us to relate the 3D coordinates of candidate
object O, the supporting plane parameter (n, h), the dis-
tance d between object and the supporting plane (Fig.4) as
d = OTn+ h.

4. Evaluation
In this section we qualitatively demonstrate the ability of

our framework to jointly estimate the scene layout (camera
location, supporting plane orientation and object location in
the 3D space) as well as improve the accuracy in detecting
objects. We test our algorithm on a novel indoor desk-top
database as well as on the LabelMe outdoor pedestrian and
cars dataset. We use Graphic Processor Unit to implement
the probability optimization. In our indoor testing set, the
average time to process one 640 × 480 image is 0.2 sec-
onds. A benchmark comparison with [18] indicates that
our method achieves competitive results in pruning out false
positives and estimating layout properties such as the hori-
zon line. We also show successful anecdotal results on a
number of images downloaded from the web.

4.1. Desk­Top Scenario
We test our framework on a novel indoor (desktop)

database where ground truth information about the geom-
etry of the scene is available. Our dataset comprises three
object categories (computer mouse, mug or stapler). Each
image in the dataset portrays from 3−5 object instances lo-
cated at randomly selected positions and with random poses
on one (or two) supporting plane(s) (Fig.10). Training and
testing sets contain 80 and 50 images respectively. For each
image we have the available ground truth values of the cam-
era focal length and the supporting plane normal in the cam-
era reference system as well as the ground truth locations
of the objects in the image. These are used in training the
distance function (Eq.(6)) and in evaluating our algorithm
performance. We learn our modified version of the object
detector and pose estimator in [31] on the 3-object category
training set. We apply the learnt detector to the testing set
and obtain a number of detected objects. For each detection
we also estimate the azimuth and zenith pose of the object.
Examples of detections are in Fig.10. Among these detec-
tions we can find a number of false alarms. So we run our
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Figure 9. Result on LabelMe dataset. (a)Car and Pedestrian detection. (b)
The histogram of the horizontal vanishing line estimation error. The Y axis
is the fraction of the number of testing images (samples) that have certain
error.

algorithm and use such detections (along with pose mea-
surements) to jointly estimate the supporting plane normal,
camera focal length and object locations (among all detec-
tions returned by the detector) that are consistent with the
estimated scene layout. Results are shown in Fig.8. No-
tice that our algorithm improves the average precision. In 1
plane case, the baseline detector average precision is 64%
compared to ours 70%; in 2 planes case, the baseline detec-
tor average precision is 56% compared to ours 61%. Crit-
ically, our algorithm recovers the scene layout with good
level of accuracy. To our best knowledge, our algorithm is
the first achieving this kind of results without using exter-
nal geometrical surface context detectors [17] with minimal
assumptions on the camera model. Furthermore, we eval-
uate the detection accuracy as function of the number of
instances appearing in the scene per test image. We notice
that performances increase as the number of instances grow.

4.2. Experiments on LabelMe Dataset
We compare our algorithm with another state-of-the-art

method that uses geometrical contextual reasoning for im-
proving object detection rates and estimating scene geomet-
rical properties such as the horizon line [18]. We use the
LabelMe database on cars and pedestrians to compare the
algorithms. Since one necessary condition for our algo-
rithm to work is that at least three objects coexist in the
same image, we remove from the dataset images containing
less than three instances (either pedestrians or cars). We
test our algorithm on 100 randomly selected images and
compare our method with [18] by using the same baseline
pedestrian and car detector as in [18]. Fig.9(a) compares
the ROC curve for car and pedestrian detection produced
by our algorithm and [18]’s. Fig.9(b) shows the histogram
of the relative error of our algorithm to estimate the horizon-
tal vanishing line, while [18] reports their median absolute
error of horizontal vanishing line estimation is 0.038. No-
tice that detection rate and accuracy in estimating the hori-
zon line are comparable. Also, note that [18] heavily re-
lies on: i) estimating surface geometry [17] by determining
”ground”, ”vertical” and ”sky” regions in the image; ii) as-
suming that the camera has a fixed distance from the ground
plane (the distance is roughly the height of a person); iii) as-
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Figure 8. Experimental results on our desk top dataset. For histogram (a) (b) and (c), the Y axis is the proportion of the number of testing samples (images)
associated to an error interval (X axis). (a) shows focal length estimation error for 50 test images; the ground-truth focal length f i

gt is known and the f i
est

is the estimated value. The error is computed as eif = (f i
est − f i

gt)/f
i
gt. (b) shows camera height estimation error for 50 test images. The ground truth

value of camera height hi
gt ranges from 35cm to 60cm, and the estimated value is hi

est. The error is computed as eih = hi
est − hi

gt. (c) shows plane
normal direction estimation error for 50 test images. The ground truth normal is ni

gt and the estimated value is ni
est. The error of normal angle is defined

as ein = arccos(ni
estn

i
gt). (d) plots precision recall curves by the base line detector (dash) and our algorithm (solid). We show the PR curves for one and

two planes separately. (e) plots the trends of average precision with the increasing number of objects on one plane dataset.

suming that no multiple ground planes (at different heights)
are present in the image. On the contrary, our algorithm:
i) does not rely on estimating horizontal or vertical regions
as it extracts spatial contextual information from the object
themselves (thus, our algorithm works even if the ground re-
gion is not visible at all); ii) does not assume fixed distance
from the ground plane which can be located everywhere in
the 3D space; iii) it works even if objects are supported by
multiple planes located at different heights. For that reason
our algorithm is particularly suitable to work in indoor set-
tings where most of the assumptions in [18] are violated.
Notice that recent work by [16] has an interesting take on
this topic.

4.3. Anecdotal Detections and Reconstructions
We conclude this section by presenting a number of

anecdotal examples. The last two rows of Fig.10 show joint
detection and scene layout estimation on images taken from
various sources including ETHZ [11] and internet.

5. Conclusions
We have presented a novel method that can jointly model

object locations and supporting surfaces (planes) in the 3D
space along with corresponding observations in a single
camera. We have modeled the problem of joint scene re-
construction and object recognition as the one of finding
the set of parameters that maximizes the joint probability
of detecting objects on several supporting planes. Exper-
imental results have demonstrated the validity of our in-
tuitions and assumptions. We see this work as a promis-
ing starting point for achieving coherent scene interpreta-
tion and object recognition. For instance, we believe that
combining our approach with [18]’s the joint recognition-
reconstruction paradigm may be further enhanced.
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(g) Image Example of Internet Image
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(j) Image Example of Internet Image (detections are manually identified)

Figure 10. In each sub-figure we show the baseline detector results on the left; our algorithm’s object detection and support plane estimation results in
the middle; our algorithm’s 3D scene layout reconstruction on the right. Baseline detection results are in red; dashed red boxes indicate false alarms.
Our improved detection results are in green; dashed green boxes indicate false alarm. Our estimated supporting plane is superimposed in yellow. Notice
that most of the supporting planes estimations are visually convincing. The 3D layout shows the side view of the 3d reconstructed scene (the camera is
located on (0, 0) pointing toward the right). The estimated supporting plane is in green and the ground truth supporting plane in blue. Green dots are the
objects detected and recovered by our algorithm (in the 3D camera reference system); red squares are objects detected by the baseline detector. Notice
that our algorithm works even if there are multiple supporting planes (two plane image in our dataset; ETHZ dataset [11]); The last two rows show results
in anecdotal scenarios. On bottom left, we use a detector to detect faces and use these (along with the fact that faces are estimated frontally) to estimate
different hypothetical supporting planes; On bottom right, we show that our algorithm can potentially recover the supporting plane and perform contextual
reasoning even when the scene is highly cluttered (here detections in red were manually identified, but successfully pruned out by our algorithm in green).
This figure is best viewed in color.
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