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Abstract

Deformable Part Models (DPMs) as introduced by
Felzenszwalb et al. have shown remarkably good results for
category-level object detection. In this paper, we explore
whether they are also well suited for the related problem
of category-level object pose estimation. To this end, we
extend the original DPM so as to improve its accuracy in
object category pose estimation and design novel and more
effective learning strategies. We benchmark the methods us-
ing various publicly available data sets. Provided that the
training data is sufficiently balanced and clean, our method
outperforms the state-of-the-art.

1. Introduction

Detecting object classes and estimating their poses are
critical perceptual capabilities for an autonomous robot to
interpret and interact with the world. For instance, for a
robotic arm to grasp an object in a scene, it is crucial to
accurately estimate the object pose from the camera view
point, so the robot can successfully interact with it. These
abilities are also crucial in autonomous navigation systems,
scene layout understanding or activity recognition.

In spite of the three-dimensional nature of the world, the
default approach for category-level object detection is still
mostly based on independent 2D models, i.e. the combi-
nation of different detectors for different viewpoints (e.g.
one detector for side views of cars, one for frontal cars,
etc.). In [22] it was shown that this results in a large
number of false positives, and better results can be ob-
tained if the classifiers for different viewpoints are inte-
grated. This leads to various multi-view object detectors,
including [1, 7, 9, 12, 15, 17, 21]. Also the Deformable
Part Model, or DPM for short, introduced recently by
Felzenswalb et al. [5], combines different viewpoints, al-
beit in an implicit way. Instead of explicitly dividing the
training data in different viewpoints at training time, this is

Figure 1. Our approach to the problem of object class pose estima-
tion is based on the DPM of [5]. In our models each component
represents a discrete viewpoint for an object class. Following this
approach, we simultaneously perform object detection and pose
estimation.

done in a latent manner. The object category model consists
of a mixture of components (as also used in [19, 23]), and
training images are assigned to components without super-
vision. Combined with a flexible model for adding object
parts, this system has demonstrated state-of-the-art results
in object detection, and was the winning scheme for most
recent PASCAL VOC challenges [3].

Related to the problem of category-level object detection
is the problem of object category pose estimation, i.e. to de-
termine the viewpoint for a given object instance. These
two problems are tightly coupled and are often solved si-
multaneously.

In this paper, we evaluate the use of DPMs for object cat-
egory pose estimation, motivated by the recent success in
object detection by both DPMs [5] and discriminative tem-
plate approaches [26]. To the best of our knowledge there
have been no systematic explorations of the performance
of DPMs in this context. Gu and Ren [7] have proposed a
mixture of HOG [2] templates for the problem of viewpoint
classification, but their model is not part-based, while for
detection the parts have been shown to be a crucial compo-
nent.

Therefore, this paper revisits the DPMs of [5], evaluating
and improving their accuracy in object category pose esti-
mation. This is achieved by: designing more effective train-
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ing strategies, and introducing a semi-latent SVM learning
methodology where the component label is not treated as
latent, i.e. only the instantiations of the model in the feature
pyramid are considered latent.

Figure 1 illustrates our approach. Our model is obtained
as a mixture of components wherein each component cor-
responds to a different viewpoint. For a new test image, the
selected component then automatically identifies the view-
point. We have performed a thorough analysis, focusing on
the following research questions: 1) How does the DPM
of [5] perform in object pose estimation? 2) How can the
DPM be adapted to improve the results? 3) How can dif-
ferences in performance between different data sets be ex-
plained? 4) What is the ideal training strategy for a DPM in
order to obtain an accurate pose estimator? 5) How does the
number of components of a DPM affect the result? 6) How
does the intra-view variability in training data modify the
performance? and 7) Does improved pose estimation also
result in better detection? We answer these questions based
on a number of experiments aimed at evaluating pose es-
timation performance using various publicly available data
sets, namely PASCAL VOC 2006, 2007 and 2010 [3], the
3D object categories of [17], the EPFL multi-view car data
set [16] and the ICARO data set [13].

The rest of the paper is structured as follows. In Section
2 we describe related work on object category pose estima-
tion. The DPM of [5] is reviewed in Section 3. In this sec-
tion we also propose extensions to the DPM which allow
object category pose estimation. The experimental setup
and results are presented in Section 4 and 5 respectively.
We conclude in Section 6.

2. Related Work
While the problem of recognizing single instances of 3D

objects has been investigated for a long time in computer
vision (see for example [14, 6]), only recently, researchers
have started to address the problem of category-level 3D (or
multi-view) object detection. Thomas et al. [22] incorporate
shape and appearance information into a 3D object model
for the class. An Implicit Shape Model (ISM) [11] is built
for each viewpoint. Then, the method of [6] is used to con-
nect regions in different views so as to transfer ISM votes
from one view to its neighboring viewpoints. A similar ap-
proach using a 3D Implicit Shape Model has been explored
by [1]. Kushal et al. [10] use a single appearance model
for object parts across different viewpoints. Object classes
are represented by Partial Surface Models (PSM), which are
formed of dense, locally rigid assemblies of image features.
Pairs of PSM which regularly co-occur near each other at
consistent relative positions are linked. These local connec-
tions are then used to build a probabilistic graphical model
for the geometry and appearance of the PSM. Yan et al.
[24] propose a method that establishes spatial connections

between views by mapping them directly to the surface of a
3D model, instead of using a mechanism for relating mul-
tiple 2D training views. Hoiem et al. [8] use a coarse 3D
model of the object class to roughly match physical parts
across instances at different viewpoints and to include a de-
scription of the color of the object. Liebelt and Schmid [12]
present a method for including external 3D geometry from
synthetic CAD models into a 2D part-based appearance de-
tection method. Savarese and Fei-Fei [17, 18] represent
an object category as a collection of view-invariant regions
linked by transformations that capture the relative change
of pose among parts. This model is further extended into a
generative Bayesian model in [20, 21] so as to incorporate
the ability to link parts across views and generate unseen
views within a principled probabilistic framework. A vari-
ety of other approaches for category pose estimation have
been explored as well (e.g. using view-specific Bayes clas-
sifiers [16], or mixed (2D and 3D) template matching [9]).

Discriminative approaches have also been proposed,
mostly focusing on the problem of object localization (e.g.
[2, 5]). The work of Gu and Ren [7] introduces a discrim-
inative approach to the problem of object class pose esti-
mation. Their approach is based on a mixture of HOG tem-
plates for joint category and pose estimation. However, they
do not use parts in their formulation.

Part-based models have received large attention lately.
The DPM model of [5], which stands out for being the win-
ner on recent PASCAL VOC challenges, has demonstrated
state-of-the-art results in object detection. Zhu et al. [25]
incorporate into a DPM the notion of hierarchy of parts,
and reformulate the training as a structural SVM learning
problem. However, neither of these works directly consid-
ers the problem of object class pose estimation. In our work,
we propose an extension and new learning strategy for the
DPM that can explicitly cope with the problem of category
pose estimation.

3. DPM for Object Category Pose Estimation
In this section, we first briefly review the DPM of Felzen-

szwalb et al. [5]. Then we extend the standard training
pipeline and introduce a modified learning strategy more
adequate for object class pose estimation.

In the DPM introduced in [5], an object class is modeled
as a mixture over m components (M1,M2, . . . ,Mm). The
model for the c-th component Mc consists of a 2 + n-tuple
Mc = (R,P1, P2, . . . , Pn, b), where: R represents the root
filter, n is the number of parts, Pi is the model of part i,
and b is a bias term. Each Pi is represented by a 3-tuple
Pi = (Fi, vi, di), where Fi is the part filter, vi defines the
anchor position of the part i (relative to the root filter), and
di encodes the deformation cost for the part. Root and part
filters are computed on a pyramid of HOG features. An ob-
ject hypothesis z specifies the mixture component as well



as the locations of both the root and part filters in the fea-
ture pyramid, i.e. z = (c, p0, . . . , pn), where c identifies
the component. So, each pi encodes the 2D position and
the level in the pyramid for the filter i (with p0 giving the
position/pyramid level of the root filter). The score of a hy-
pothesis, i.e. s(z), is given by the scores of the filters at their
locations minus a deformation cost that depends on the rel-
ative position of each part with respect to the root filter, plus
the bias (we refer to [5] for further details). This score can
be expressed in terms of a dot product, s(z) = βc ·Φ(H, z),
where βc = (R,F1, . . . , Fn, d1, . . . , dn) is the model pa-
rameters vector for component c, and Φ(H, z) is the feature
vector for a given hypothesis z in the feature pyramid H .

In our approach, for category-level pose estimation, we
use a mixture model with m components. Each component
c corresponds to a particular viewpoint of the class. An ob-
ject hypothesis z specifies the component (i.e. pose) as well
as the locations of the filters for the selected component. So,
object detection and pose estimation are solved simultane-
ously.

3.1. Training DPMs for pose estimation

Felzenszwalb et al. [5] introduce a coordinate-descent
algorithm for learning the model parameters: the Latent-
SVM. The method simultaneously learns the object detec-
tor and parts detectors without part-level training annota-
tion. The problem of part discovery is casted as a multiple
instance SVM learning problem. It is possible to reformu-
late the DPM learning as a structural SVM learning prob-
lem [25], but here we follow the original learning paradigm
proposed in [5].

The DPM in [5] has been carefully designed and opti-
mized for object detection. Each component learned by the
original implementation [4] is an asymmetric model. This
bilateral asymmetry allows each component to specialize at
the task of detecting left or right object orientation. This
property improves the performance in object detection, but
is not suitable to discriminate between e.g. frontal and rear
poses of cars, which cannot be distinguished by their orien-
tation. Furthermore, during training, the model ignores the
pose labels given by some of the PASCAL VOC annota-
tions. For initialization, images are assigned to components
based on the aspect ratio of the bounding boxes.

In this work we propose to initialize the components by
assigning the images based on the pose labels in the dataset.
Moreover, we do not incorporate the bilateral asymmetry
into the model. As in [5], we start training the root filters of
each component independently. These root filters are com-
bined into a mixture model with no parts, and we retrain
the combined model parameters using latent detections and
hard negatives, as it is described in the Latent-SVM learn-
ing. Parts are initialized using the heuristic detailed in [5],
and learned following again the Latent-SVM approach. In

the experiments (Section 5) the models trained following
this pipeline are referred to as DPM.

3.2. Semi-latent SVM learning strategy

Toward the goal of improving pose estimation accu-
racy, we also experiment with an alternative, modified
learning strategy. In the Latent-SVM training pipeline,
a coordinate-descent approach is followed similar to
expectation-maximization. It alternates between two steps:
1) relabel the positive examples, and 2) optimize the objec-
tive function over model parameters β. That is, the process
starts optimizing the objective function over Z(xi), which
specifies a latent value for each positive example xi in the
training set, i.e. the instantiations of the model in the feature
pyramid. The objective of this step is to find the highest
scoring object hypothesis with a root filter that significantly
overlaps the positive example. In the second step, the goal
is to optimize the objective function over β, i.e. update the
model parameters. This two steps procedure needs a careful
initialization.

When a mixture of models is trained during the step 1,
both the component label and the instantiations of the filters
are treated as latent variables. However, for pose estima-
tion, we propose a semi-latent learning strategy. During the
optimization, in step 1, only the instantiations of the filters
are treated as latent, but not the component label, which is
fixed to the pose label given in the training data. That is,
for each positive example zi = (c, z′i), the label component
c is given, and z′i = (p0, . . . , pn) encodes the positions of
the filters in the feature pyramid. In step 1, we select the
highest scoring latent value for each positive example as
z′i = arg maxz′∈Z(xi) β · Φ(xi, z

′).
We combine this modification in the optimization pro-

cess, with a new design of the training pipeline for category-
level pose estimation, where the different components are
merged gradually. As in the previous DPM version, we start
training the root filters for each component independently.
However, instead of taking negative examples from images
without the objects of interest, we take as negatives the im-
ages of the opposite viewpoint to further help discriminate
between poses, e.g. when training the frontal view, nega-
tives are taken from the rear view. In a second step, opposite
viewpoints are combined into a mixture model, and trained
against negatives extracted from images that do not contain
the object class of interest. For this training step and the
rest, the modified optimization approach is used to retrain
the model parameters. In a third step, all the components
are combined into a global mixture model, and we retrain
the model parameters again. Finally, parts are initialized
and learned. The models trained with this modified training
pipeline are referred to as mDPM in Section 5, which stands
for modified DPM.



4. Experimental Setup

Object category pose estimation involves predicting both
the bounding boxes of objects as well as their poses. To
evaluate this process, we build on the PASCAL VOC Chal-
lenge guidelines [3] for evaluation of object detection us-
ing the interpolated average precision (AP). We first evalu-
ate the bounding box with the standard 50% overlap crite-
rion. Next we evaluate the estimated pose, which is consid-
ered correct if it coincides with the ground truth pose label.
We then compute the Pose Estimation Average Precision
(PEAP) similar to AP but using as positives only the cor-
rect detections with correct pose estimation. Additionally,
we present results using confusion matrices. For these, we
compute the mean of the elements on the main diagonal, a
measure we refer to as Mean Precision in Pose Estimation
(MPPE). The extensions to the DPM of [5] proposed in this
paper are all built on top of the original software. [4].

4.1. Datasets

Traditionally, object category pose estimation systems
are benchmarked using the annotated images in the PAS-
CAL VOC 2006 [3] (only for the classes car and bicycle),
and the more complete 3D object categories dataset intro-
duced in [17]. Here, we also present results using the PAS-
CAL VOC 2007 and 2010 datasets, the ICARO [13] set of
images and the EPFL Multi-view car dataset [16].

For the experiments with PASCAL VOC 2006 and 2007,
we select the trainval and test sets for training and
testing respectively. However, for PASCAL VOC 2010, we
use the train and val sets for training and testing, re-
spectively. We only run experiments for the classes car and
bicycle. Note that the PASCAL VOC datasets do not offer
a viewpoint annotation for every object in the dataset. In
a first set of experiments we only use those training im-
ages that come with pose information. Additionally, we
have also manually annotated the discrete pose for all other
images that come without this information (for the car and
bicycle classes). We refer to these as PASCAL VOC Aug-
mented sets1.

We also run experiments using the 3D object categories
dataset [17]. For each class, the dataset offers images of
10 different object instances with 8 different poses. In the
experiments we follow the evaluation protocol described in
[17]: 7 randomly selected objects are used for training, and
3 object instances for testing. 2D training bounding boxes
are obtained from the provided segmentation masks. The
negative examples are taken from the PASCAL VOC 2007
set. We use all the classes in the dataset, except the class
monitor, because it contains too few image sequences.

1These augmented sets for the PASCAL VOC 2006, 2007 and
2010 can be downloaded from http://agamenon.tsc.uah.es/
Personales/rlopez/data/pose-estimation/
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Figure 2. Mean Precision in Pose Estimation (MPPE) in the 3D
object categories dataset for DPM and mDPM.

MPPE
Class DPM mDPM [7] [21] [12]

bicycle .88 .90 n/a n/a .75
car .90 .89 .74 .67 .70

Table 1. A comparison between methods for classes car and bicy-
cle in the 3D Object categories dataset.

ICARO [13] is a publicly available dataset especially de-
signed for object category pose estimation. The dataset con-
sists of 6419 images of 26 classes, with a total of 16221
annotated objects spread over 11 discrete viewpoints. We
follow the evaluation protocol detailed in [13]. We use the
trainval set of ICARO for training and the test set for
testing.

Finally, we use the EPFL Multi-view car dataset, which
was introduced in [16]. It contains around 2000 images, be-
longing to 20 different car models. All the cars appear cen-
tred in the images, without occlusions, and under 16 poses
(covering the whole 360 degree range). We follow the ex-
perimental setup proposed in [16] using only the 10 first
sequences for training, and the rest for testing.

5. Experiments
5.1. 3D Object categories

This dataset is widely acknowledged as a challenging
benchmark for category-level pose estimation. We train and
test models of 8 components, and compare the performance
with state-of-the-art results reported by Gu and Ren [7], Sun
et al. [21] and Liebelt and Schmid [12].

Figure 2 shows a comparison between DPM and mDPM.
Except for classes car and head, the mDPM obtains signifi-
cantly better results than the DPM in pose estimation2. The
average MPPE for mDPM is 79.2%, while for DPM it is
69.5%, resulting in an average increase in performance of
mDPM over DPM of 9.7%. Furthermore, Table 1 shows
that the DPM-based methods proposed in this paper obtain
significantly better results than the state-of-the-art.

2Note that we compare pose estimation results that have been obtained
on top of different detections, i.e. each method estimates the pose based on
its own object detections. This holds for all experiments reported. This is
the way the comparisons have been done in the literature so far.

http://agamenon.tsc.uah.es/Personales/rlopez/data/pose-estimation/
http://agamenon.tsc.uah.es/Personales/rlopez/data/pose-estimation/


AP
Method bike car cell head iron mouse shoe stapler toaster

DPM .91 1 .62 .87 .78 .71 .88 .73 .9
mDPM .91 .96 .43 .76 .53 .41 .78 .32 .54

Table 2. AP in 2D object detection for DPM and mDPM in the 3D
object categories dataset.

For object detection, Table 2 shows the AP obtained by
DPM and mDPM. For most of the classes, the DPM ver-
sion performs better than the mDPM. The modification in-
troduced in mDPM, makes this approach more suitable for
pose estimation, but less effective in object detection for
this dataset. We believe this difference in AP performances
stems from the different training pipelines. Recall that DPM
follows the latent-SVM formulation described in [5], and
this work has shown state-of-the-art results in 2D object de-
tection.

5.2. ICARO

The objective of this experiment is threefold: 1) explore
how DPM and mDPM object class pose estimators per-
form with images where the objects appear in more realistic
scenes (occluded, not centred, with clutter, etc.), 2) analyze
how the number of training images affects the performance,
and 3) explore how the intra-view variability in the training
and testing sets influences the results. To do so, we use the
ICARO dataset [13] for learning a 8 viewpoint estimator for
the classes car, laptop and motorbike. In the experiments,
we increase the number of training images from 50 to 250
(distributed over all viewpoints). Figure 3 shows the results
of this experiment. On average, the MPPE is higher for
the mDPM (0.46) than for the DPM (0.42). For quite low
number of training images, reasonable results are obtained,
but, as expected, they improve when more training data is
available.

If we compare the results obtained for the class car in 3D
object categories and in ICARO, we notice that the MPPE
drastically decreases from 89% to 45%. We relate this drop
of performance to several reasons. The objects in ICARO
appear not centred, with occlusions and with background
clutter. Moreover, the intra-view variability of the train-
ing set is higher than in the 3D object categories dataset,
which makes both the detection and pose estimation prob-
lems harder. Figure 4 shows the confusion matrices for
class car and method mDPM. Note that there is a relatively
high confusion between adjacent views, e.g. frontal-left and
frontal. This can be explained by the fact that the pose an-
notations in ICARO are not as precise as in the 3D object
categories database, where the images were taken from well
controlled viewpoints.
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Figure 6. Precision/recall curves for object localization (a)-(b), and
for pose estimation (c)-(d) for DPM and mDPM trained on EPFL.

5.3. EPFL Multi-view car

We want to explore how DPMs perform in pose estima-
tion when the number of discrete views increases. In this
experiment we train 3 different DPM and mDPM models:
for 16, 8 and 4 poses (collapsing the 16 viewpoints into 8
and 4). Figure 5 shows the confusion matrices. Even though
the number of viewpoints has doubled, the MPPE for 16
viewpoints is not much lower than for 8 viewpoints, show-
ing that accurate pose estimation is possible. Furthermore,
our mDPM, for 16 viewpoints, obtains a MPPE of 66.1%,
while the method in [16] resulted in a MPPE of 41.6%3. We
also benchmark the 2D object detection in this dataset. Fig-
ures 6(a) and 6(b) show the precision/recall curves for ob-
ject detection. DPM (AP=1) and mDPM (AP=0.97) obtain
better results than the method in [16] (AP=0.85). In addi-
tion, we also benchmark the pose estimation in this dataset
measuring the PEAP. Figures 6(c) and 6(d) show the pre-
cision/recall curves and the PEAP for each method. The
PEAP of mDPM is higher than of DPM.

5.4. PASCAL VOC datasets

Finally, we show results on the PASCAL VOC 2006,
2007 and 2010 datasets for classes bicycle and car. Table
3 shows a comparison of DPM and mDPM in the PASCAL
VOC 2006 with state-of-the-art results reported by Gu and
Ren [7] and Sun et al. [21]. Again, mDPM gives better
results than DPM. Our models only outperform the results
of [21]. This is due to a large confusion between frontal
and rear views for class car. In addition to the large vi-
sual similarity between these views, the low accuracy of the

3The authors of [16] were contacted and they sent us the actual values.
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Figure 3. ICARO: a comparison of performance (MPPE) when the number of training images increases. The figure presents results for
DPM and mDPM trained to estimate 8 poses.
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Figure 4. Confusion matrices for the class car and method mDPM trained on ICARO for different number of training images. This figure
is best viewed with magnification.

models proposed can be attributed to the unbalancedness of
the training set. Moreover, within the same viewpoint, the
objects present changes in scale, azimuth and zenith, and
some of them are occluded. All these factors have a nega-
tive impact on the performance of DPM and mDPM in pose
estimation, which prefer a balanced and precise training set,
such as in the case for the 3D Object categories.

We now use the PASCAL VOC Augmented sets. Fig-
ures 7(a) and 7(b) show the results obtained by mDPM in
the standard and the augmented sets for classes bicycle and
car respectively. While for class bike there are no differ-

MPPE
Class DPM mDPM [7] [21]

bicycle .57 .72 n/a n/a
car .69 .73 .86 .57

Table 3. MPPE for classes car and bicycle in the PASCAL VOC
2006 for different methods.

ences between the results obtained with the standard and the
augmented dataset, for the class car in the VOC 2006 and
2010 datasets, the MPPE increases when the augmented set
is used. This may be due to the fact that these 2 augmented
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Figure 5. Confusion matrices for mDPM vs. the number of poses in the EPFL dataset.
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Figure 7. MPPE for the mDPM using the standard and the aug-
mented PASCAL VOC datasets.

sets are more balanced. Moreover, the higher the year of
PASCAL VOC, the larger the variability on the dataset and
the lower the performances of DPM and mDPM.

5.5. Discussion

Experimentally, we have detected that the performance
in pose estimation of DPMs decreases for datasets where
the intra-view variability is high (e.g. PASCAL VOC and
ICARO), and where the training set is unbalanced. In or-
der to investigate to what degree the intra-view variability
affects the performance of DPM and mDPM, we set up the
following experiments.

Using the EPFL dataset, we propose an experiment
where the intra-view variability is controlled by mixing up
adjacent views. We start training and testing a mDPM of 4
viewpoints, only using the images belonging to the 4 clean
poses frontal, left, rear and right. Note that this is different
from collapsing the 16 viewpoints into 4, as we did for the
experiment in Figure 5. In the next step we merge 2 ad-
jacent views (e.g. we label as frontal not just view number
1, but view numbers 1, 2 and 16). Finally, we merge 4 ad-
jacent views with left and right, and 2 adjacent views with
frontal and rear. Results in Figure 8(a) show that the MPPE
monotonically decreases while we mix up adjacent views.
Following this strategy, we can simulate the conditions we
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Figure 8. (a) MPPE vs mixing up adjacent poses for a mDPM. (b)
MPPE of mDPMs trained on different datasets and tested in the
PASCAL VOC.

find in the PASCAL VOC and ICARO datasets.
Additionally, we test in the PASCAL VOC datasets,

models that have been trained in the EPFL and the 3D Ob-
ject categories datasets. With the latter, we train 2 dif-
ferent models. For the first one (3DOC-fixed), we only
use images with a fixed zenith of 0 degrees. For the sec-
ond one (3DOC), we use images with all the zenith an-
gles provided in the 3D Object categories dataset. Figure
8(b) shows the obtained results. All the models, except the
3DOC trained with VOC 2006, obtain better results than
the mDPM trained directly on the PASCAL train sets. This
is remarkable, since usually best results are obtained when
training on the same dataset. Especially for the VOC 2010
dataset, where the intra-view variability is very high, the
mDPM trained on EPFL obtains very good results (MPPE
65.25%). So, we conclude that DPMs improve state-of-the-
art results in category pose estimation if one ensures that the
ground truth annotations are sufficiently precise.

As far as the 2D object detection performance of the
DPM-based methods proposed is concerned, Table 4 shows
the AP of the class car for each dataset. In general, a de-
crease of performance for mDPM is observed, although
it depends on the dataset used. For instance, results for
the EPFL are very significant. For an almost perfect and
identical 2D detection (see Figure 6(a)) for both DPM and



AP
3DOC EPFL ICARO VOC2006 VOC2007 VOC2010

DPM 1 1 .33 .57 .44 .34
mDPM .96 .97 .29 .52 .38 .13

Table 4. 2D Object detection AP for the class car.

mDPM, the PEAP increases from 61% (for DPM) to 71%
(for mDPM). In conclusion, even with identical detection
rates, the pose is estimated better by the mDPM approach.

6. Conclusion
We have presented a thorough performance evaluation

of DPMs for category pose estimation. We also have pro-
posed adapted training and novel learning strategies that im-
prove the performance in viewpoint estimation of DPMs.
We have extensively studied how the training data affects
the performance of the proposed models. The high intra-
view variability of some datasets negatively affects the per-
formance of the pose estimators. In these cases, better re-
sults are obtained if the models are trained on external, clean
data such as the 3D object categories. Provided that the
training data is sufficiently balanced and clean, our train-
ing strategies significantly outperform the state-of-the-art
(+16% and +24% classification accuracy for the 3D object
categories dataset and the EPFL Multi-view cars dataset, re-
spectively). In future work we aim to extend our models to
the continuous viewpoint estimation problem.

Acknowledgements
This work was partially supported by projects TIN2010-

20845-C03-03 and CCG10-UAH/TIC-5965, ERC grant
240359 (COGNIMUND), ARO grant W911NF-09-1-0310
and NSF CAREER #1054127. We wish to thank Carolina
Redondo and Isabel Ventura for their help with the annota-
tion of the PASCAL VOC datasets.

References
[1] M. Arie-Nachimson and R. Basri. Constructing implicit 3d

shape models for pose estimation. In ICCV, 2009.
[2] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005.
[3] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes
(VOC)challenge. IJCV, 88(2):303–338, 2010.

[4] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester.
Discriminatively trained deformable part models, release 4.
http://people.cs.uchicago.edu/ pff/latent-release4/.

[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. PAMI, 32:1627–1645, 2010.

[6] V. Ferrari, T. Tuytelaars, and L. Van Gool. Simultaneous
object recognition and segmentation from single or multiple
model views. IJCV, 67(2):159–188, 2006.

[7] C. Gu and X. Ren. Discriminative mixture-of-templates for
viewpoint classification. In ECCV, 2010.

[8] D. Hoiem, C. Rother, and J. Winn. 3D LayoutCRF for multi-
view object class recognition and segmentation. In CVPR,
2007.

[9] W. Hu and S.-C. Zhu. Learning a probabilistic model mixing
3d and 2d primitives for view invariant object recognition. In
CVPR, 2010.

[10] A. Kushal, C. Schmid, and J. Ponce. Flexible object models
for category-level 3d object recognition. In CVPR, 2007.

[11] B. Leibe, A. Leonardis, and B. Schiele. Combined object cat-
egorization and segmentation with an implicit shape model.
In ECCV, pages 17–32, 2004.

[12] J. Liebelt and C. Schmid. Multi-view object class detection
with a 3d geometric model. In CVPR, 2010.
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