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Relating Things and Stuff via Object Property
Interactions

Min Sun*, Byung-soo Kim*, Pushmeet Kohli, Silvio Savarese

Abstract—In the last few years, substantially different approaches have been adopted for segmenting and detecting “things”
(object categories that have a well defined shape such as people and cars) and “stuff” (object categories which have an
amorphous spatial extent such as grass and sky). While things have been typically detected by sliding window or Hough
transform based methods, detection of stuff is generally formulated as a pixel or segment-wise classification problem. This
paper proposes a framework for scene understanding that models both things and stuff using a common representation while
preserving their distinct nature by using a property list. This representation allows us to enforce sophisticated geometric and
semantic relationships between thing and stuff categories via property interactions in a single graphical model. We use the latest
advances made in the field of discrete optimization to efficiently perform maximum a posteriori (MAP) inference in this model.
We evaluate our method on the Stanford dataset by comparing it against state-of-the-art methods for object segmentation
and detection. We also show that our method achieves competitive performances on the challenging PASCAL09 segmentation

dataset.

Index Terms—Scene understanding, Semantic Labeling, Segmentation, Graph-cut

1 INTRODUCTION

The last decade has seen the development of a number
of methods for object detection, segmentation and
scene understanding. These methods can be divided
into two broad categories: methods that attempt to
model and detect object categories that have distinct
shape properties such as cars or humans (things), and
methods that seek to model and identify object cat-
egories whose internal structure and spatial support
are more heterogeneous such as grass or sky (stuff). In
the first category, we find that methods based on pic-
torial structures (i.e., Felzenszwalb et al. [1]), pyramid
structures (i.e., Grauman and Darrell [2]), generalized
Hough transform [3]-[7], or multi-view model [8], [9]
work best. These representations are appropriate for
capturing shape or structural properties of things, and
typically identify the object by a bounding box. The
second category of methods aims at segmenting the
image into semantically consistent regions [10]-[12]
and work well for stuff, like sky or road.

In order to coherently interpret the depicted scene,
various types of contextual relationships among ob-
jects (stuff or things) have been explored. For exam-
ple, co-occurrence relationships (e.g., cow and grass
typically occur in the same image) have been cap-
tured in [13], [14], 2D geometric relationships (e.g.,
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below, next-to, etc) have been utilized in [15]-[17],
2.5D geometry relationships (e.g., horizon line) have
been incorporated by Hoiem et al. [18] and Bao et
al. [19]. The use of such contextual relationships has
inspired the development of robust algorithms for
various object recognition tasks. For instance, many
segmentation methods [13], [20], [21] have been pro-
posed to capture stuff-stuff relationships in a random
field formulation. Similarly, thing-thing relationships
have been incorporated into a random field for jointly
detecting multiple objects (Desai et al. [16]).

Recently, researchers have proposed methods to
jointly detect things and segment stuff. Gould et
al. [22] proposed a random field model incorporating
both stuff-stuff, thing-stuff, and thing-horizon rela-
tionships. One limitation of their approach is that
it cannot capture 2D geometric and co-occurrence
relationships between things. Moreover, inference is
computationally very demanding and typically takes
around five minutes per image. To overcome this
limitation, some authors have proposed inference
procedures which leverage existing approaches for
detection and segmentation and use the output of
such approaches as input features in an iterative
fashion [23]-[26]. Unfortunately, convergence is not
guaranteed for most of these approaches.

We propose a novel framework for jointly detecting
things and segmenting stuff that can coherently cap-
ture many known types of contextual relationships.
Our contributions are three-fold. First, the model
infers the geometric and semantic relationships de-
scribing the objects (i.e., object = is behind object y)
via object property interactions. Second, the model
enables instance base segmentation (see color coded
segments in Fig. 1(d)) by associating segments of
thing categories to instance-specific labels. Finally, the
special design of model potentials allows us to utilize
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Fig. 1: Our goal is to segment the image into things (e.g., cars, humans, etc.) and stuff (e.g., road, sky, etc.) by combining
segmentation (bottom) with object detection (top). Results from different variants of our method (capturing a subset of
critical contextual relationships) are shown from left to right columns. At the top of each column, we show the top 4
probable bounding boxes, where light and dark boxes denote the confidence ranking from high to low. Instance-based
segmentation are shown in each bottom column, where different colors represent different object instances, and all stuff
categories are labelled with white color to make the figure less cluttered. The CRF+Det model enforces the detections to
be consistent with the segment labels. While the green car segments are reinforced by the strong (white) car detection,
very weak (dark) false detections are also introduced due to noisy segment labels in the background region. On the
other hand, our final ACRF captures the key relationships so that it recovers many missing detections and segmentation
labels. Thing-Stuff and Thing-Thing relationships are indicated by color-coded arrows connecting bounding boxes and/or
segments. Different color codes indicate different types of relationships.

a combination of state-of-the-art discrete optimization
techniques to achieve efficient inference which takes a
few seconds per image in average using a single core.

Object hypotheses and property lists. Our frame-
work extends the basic conditional random field
(CRF) formulations for scene segmentation (i.e., as-
signing an object category to each segmentation vari-
able X) [11], [27] by introducing the concept of a
“generic object hypothesis” described by a property list
(Fig. 2-Top). Instead of only capturing the semantic
property of the hypothesis using an object categorical
label [ in the basic conditional random field, we
allow the list to include geometric properties, such as
the 2D location (u,v), the distance from the camera
(depth) d, and the set of segments V associated with
the object hypothesis. Notice that the generic object
hypothesis naturally describes the existence of an
object instance with respect to the camera. Hence, our
scene segmentation framework can not only segment
a scene into different object categories but also into
object instances with different properties (i.e., things)
as shown in Fig. 1(d). Thus, it generalizes the work
of Barinova et al. [6], [28].

We augment the above-mentioned CRF formula-
tion with object hypothesis indicator (binary) vari-
ables which capture the presence or absence of ob-
ject hypotheses (see the solid (on state) and dash
(off state) nodes in Fig. 2(a)-Top). We refer to our
model as the augmented CRF, or ACRF to high-
light the newly added object hypothesis indicator
variables. Two additional relationships are captured
in our ACRE. Firstly, the state of the indicator vari-
able needs to be consistent with the assignment of
the segmentation variables associated with the cor-
responding object hypothesis. We introduce a novel
higher-order potential function to penalize, for the
first time, both types of inconsistency: i) the indicator
is off but many segments in set V are still assigned to
the corresponding hypothesis; ii) the indicator is on

but only a few segments in set V are assigned to the
corresponding hypothesis. Secondly, the object indica-
tor variables allow us to easily encode sophisticated
semantic and geometric relationships between pairs
of object hypotheses. For instance, simple pairwise
potentials defined over object indicator variables can
allow to incorporate i) 2D geometric relationships
such as “above” which models the property that one
hypothesis lies above the other (e.g., a person sitting
on a bike), ii) 2.5D depth-ordering and occlusion rela-
tionships such as ”in-front” which models the prop-
erty that one hypothesis lies in front of the other (e.g.,
a person standing in front of a car). More sophisticated
relationships such as a composition of these basic 2D
or 2.5D relationships can also be supported. Critically,
the ACRF model generalizes Ladicky et al.’s model
[13] capturing stuff-stuff co-occurrence contextual re-
lationships only. In contrast, our model can encode
relationships between generic object hypotheses (both
things and stuff) depending on their semantic and
geometrical properties. We illustrate the efficacy of
our approach in Fig. 1. As seen in the figure, detec-
tions typically do not agree with the segmentation
results (Fig. 1(b)) if the detection and segmentation
are applied separately. A model capturing relation-
ships among object hypothesis and segments ensures
consistency between detection and segmentation re-
sults (Fig. 1(c)). However, the relationships between
object hypotheses are ignored. Hence, false object hy-
potheses sometime are introduced. Finally, when pair-
wise relationships of object hypotheses (e.g., next-to,
behind, etc) are included, even small object instances,
that are hard to detect and segment, can be discovered
(Fig. 1(d)).

Learning. Given the property list, a pre-defined set
of pair-wise relationships of object hypotheses are
encoded in our model via property interactions as de-
scribed in Sec. 3.3. The likelihood of the relationships
are treated as model parameters that are learned from
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training data. For example, the model should learn
that a person is likely to sit on a motorbike, and cow
and airplane are unlikely to co-occur. In our model,
a likely relationship will add a negative cost to the
energy of the model. On the other hand, an unlikely
relationship will add a positive cost. We formulate
the problem of learning these costs jointly with other
parameters as a Structured SVM (S5SVM) [29] learning
problem with two types of loss functions related to the
segmentation loss and detection loss, respectively (see
Sec. 5 for details).

MAP Inference. Jointly estimating the segmentation
variables X and indicator variables Y (See nodes in
Fig. 2(c)) is challenging due to the intrinsic difference
of the indicator and segmentation variable space, and
newly added complex relationships between them
(See edges in Fig. 2(c,d)). We design an efficient
graph-cut-based move making algorithm by combin-
ing state-of-the-art discrete optimization techniques.
Our method is based on the a-expansion move mak-
ing approach [30], which works by projecting the en-
ergy minimization problem of segmentation variables
X into a binary energy minimization problem to have
the same space as the indicator variables Y. We use
the “probing” approach similar to the one introduced
by Rother et al. [31] to handle the non-submodular
function describing pair-wise relationships of object
hypotheses. Our MAP inference algorithm takes only
a few seconds per image in average using a single
core as opposed to five minutes by Gould et al. [22].
Outline of the Paper. The rest of the paper is orga-
nized as follows. We first describe the related work in
Sec. 2. Model representation, inference, and learning
are elaborated in Sec. 3, 4, and 5, respectively. Imple-
mentation details and experimental results are given
in Sec. 6.

2 RELATED WORK

Our method is closely related to the following three
methods which all can be considered as special cases
of our model. Desai et al. [16] propose a CRF model
capturing thing-thing relationships and show that
object detection performance can be consistently im-
proved for multiple object categories. Their model can
be considered as a special case of our model when no
segmentation variable X exists.

Both Ladicky et al.’s methods [13], [32] extend the
basic CRF model to incorporate more sophisticated
relationships. Ladicky et al. [32] incorporate things-
stuff relationships and demonstrate that the informa-
tion from object detection can be used to improve
the segmentation performance consistently across all
object categories. Their model can be considered as a
special case of our model when no thing-thing rela-
tionship is incorporated. One more subtle difference
is that their model only weekly enforces the consis-
tency between things and stuff. Their model does not
penalize the case when the indicator is off but many

segments are still assigned to the corresponding hy-
pothesis. Notice that the strong consistency of things-
stuff in our model is crucial in combination with
thing-thing relationships. Otherwise, many segments
will still be assigned to the corresponding hypothesis
even when the hypothesis is suppressed by thing-
thing relationships. Ladicky et al. [13] propose to
capture co-occurrence types of object relationships
and demonstrate that the co-occurrence information
can be used to improve the segmentation performance
significantly. Their model can also be considered as a
special case of our model when no geometric relation-
ships of object hypotheses (i.e., above, same horizon,
etc) are established. Finally, [13] cannot be used to
assign segments to object instances or localize object
instances. Our results on the Stanford dataset demon-
strate that our model achieves superior performances
than [13], [32].

Our method shares similar ideas with Yao et al. [33]
to jointly model object detection and scene segmenta-
tion. However, there are two main differences. Yao
et al. also jointly model scene classification problem
and use the scene class to restrict the possible object
categories existing is an image. Therefore, they need
to apply a set of pre-trained scene classifiers in ad-
dition to the object detectors and scene segmentation
methods. Moreover, their model does not incorporate
thing-thing geometric relationships. Their model ig-
nores facts such as cars are typically “next-to” each
other and cups are “on-top” a table. As a result, their
method works well on datasets which contains only
few object instances (typically less than 3) such as the
MSRC dataset [27]. On the contrary, our experimental
results show that our method works well on datasets
containing many more object instances such as Stan-
ford dataset [21].

The Semantic Structure From Motion (SSFM) pro-
posed by Bao et al. [34] also jointly models object
instances and regions. However, unlike our method
which utilizes one single image, their approach uti-
lizes the correspondences of object instances and re-
gions established across multiple images to improve
object detection and segmentation performances.

Li et al. [35], [36] proposes generative models to
jointly classify the scene, recognize the class of each
segment, and/or annotate the images with a list of
tags. However, the model cannot localize each object
instances. Hence, the thing-thing and thing-stuff in-
teractions are not incorporated in their model.

Many methods explore contextual relationships be-
tween segments and/or object hypotheses to improve
a specific visual task such as detection, category
discovery, etc. For instance, [37] use contextual re-
lationships to discover object categories commonly
appearing within a set of images. It was demonstrated
in [38], [39] that the contextual relationships can be
used to improve object detection performance.
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Fig. 2: Our Augmented CRF model (ACREF). Panel (a) illustrates that our model jointly segments the image by assigning

labels to segments (bottom layer) and detects object by determining which object hypotheses exist (top layer). The existence
of the hypotheses are indicated by solid (on) and dash (off) nodes. As shown on the top panel, each “thing” object
hypothesis possesses properties such as category, location (u,v), etc. On the other hand, each “stuff” object hypothesis
possesses only the category label. In panel (b), we give examples of relationships established via property interactions. For
“thing” categories, geometric relationships such as behind and above can be established. On the other hand, for “stuff”
categories, semantic relationship such as co-occurrence can be established. Notice that the two edges, which connect to
the stuff categories and end in the dashed separator line, represent the co-occurrence relationships between stuff and all
thing categories. In panel (c), the figure shows the label space of the segmentation variables X (color-coded blocks) and
the indicator variables Y (0 and 1 blocks). The higher-order potential capturing the relationship between indicator i and
a set of segmentation variable in V; is represented by an edge between a node on top layer and a set of nodes at the
bottom layer. In panel (d)-Bottom, the figure shows the pairwise and higher order potential among segmentation variables
X which are presented in the basic CRF formulation. In panel (d)-Top, the figure shows the pairwise potential between

pairs of indicator variables Y which encodes different geometric and semantic relationships.

3 AUGMENTED CRF

We now explain our Augmented Conditional Random
Field (ACRF) model. ACRF jointly models object de-
tection and scene segmentation (Fig. 2 (a)) by incor-
porating contextual relationships between things and
stuff, and between multiple things (Fig. 2 (b)).
Basic CRFE. Similar to other scene segmentation meth-
ods, our model is developed on top of a basic Con-
ditional Random Fields (CRF) model. The basic CRF
model is defined over a set of random variables
X ={z;}, i € V where V represents the set of image
elements, which could be pixels, patches, segments,
etc (Fig. 2 (c)-Bottom). Each random variable z; is
assigned to a label from a discrete label space L, which
is typically the set £ of object categories such as grass,
road, car and people.

The energy (or cost) function E(X) of the CRF is the
negative logarithm of the joint posterior distribution
of the model and has the following form:

E(X) = —logP(X|€) = —log derr(X|€) + K

= > ve(Xo)+K, (1)

ceCX

where £ is the given evidence from the image and
any additional information (e.g., object property lists),
derr(X|E) takes the form of a CRF model with higher
order potentials defined over image elements (Fig. 2
(d)-Bottom). ¢err(X|E) can be decomposed into po-
tential ). which is a cost function defined over a set of
element variables X, (called a clique) indexed by ¢ €
CX; CX is the set of cliques for image elements, and
K is a constant related to the partition function. The
problem of finding the most probable or maximum
a posteriori (MAP) assignment of the CRF model is

equivalent to solving the following discrete optimiza-
tion problem: X* = argminy.,v E(X), where |V|
indicates the number of elements.

The basic CRF model mostly relies on bottom-up
information. It is constructed using unary potentials
based on local classifiers and smoothness potentials
defined over pairs of neighboring pixels. Higher-order
potentials (such as the ones used in [11]) encourage
labels of image elements within a group to be the
same. This classic representation for object segmen-
tation has led to excellent results for the stuff object
categories, but has failed to replicate the same level of
performance on the thing object categories. The reason
for this dichotomy lies in the model’s inability to
explicitly encode the relationship between the shape
and relative positions of different parts of structured
object categories such as the head and the torso of a
person.

In contrast, part-based models such as Pictorial
Structures [40], Latent SVM (LSVM) [1], and Hough
transform based models [3], [6] have shown to be
much more effective at detecting “things” by gener-
ating a list of object hypotheses ordered according
to their scores/likelihoods. Each hypothesis is often
characterized by a property list including the category
of the object [, the spatial location in the image (u,v),
the depth or distance d of the object instance from
the camera, and the set of segments V associated
with the object hypothesis (Fig. 2 Top panel). In many
application, a detection problem can be relaxed into
an image-level classification problem. A classification
method generates a hypothesis of the existence of an
object category in the image without specifying the
spatial configuration of the object. Since the spatial
configuration of the object does not need to be spec-
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ified, hypotheses for both “things” and “stuff” can
be generated. Notice that, in this case, the property
of such hypothesis only includes the category of the
object [.

Augmented CRE. In order to take advantage of both
the object detection and segmentation methods, we
introduce a set of indicator variables (later referred
to as indicators) ¥ = {y; € {0,1};5 € Q} corre-
sponding to every object hypothesis in our ACRF
model (Fig. 2 (c)-Top). Theoretically, the number of
all possible object hypotheses |Q| is large, since it
is the Cartesian product of the space of all possible
object category labels £, all possible spatial locations
U x V in the image, and all depth or distance values
within a range [0, D]. For example, a sliding window
detector exploring 10 scales/depths considers 369K
hypotheses in total for a 320 x 240 image. Therefore,
it is potentially hard to handle. Fortunately, in real
world images, only a few hypotheses are actually
present. Thus, most indicator variables y;, j € Q are
off (i.e., y; = 0). We use object detectors that have been
trained on achieving a high recall rate to generate a
relatively small set of plausible object hypotheses Qg4
(about 20 per class on Stanford dataset ') compared
to the size of all possible object hypotheses Q. In
addition, a set of object hypotheses Q. with only
object category label, similar to the ones generated
by image-level classification methods, are included.
As a result, we obtain the set of object hypotheses
Q = Qd U Qc‘

Recall that variables X representing the image
elements in the basic CRF formulation for object
segmentation typically take values from the set of
object categories L. In contrast, in our framework,
these variables take values from the set of plausible
object hypotheses z; € L = Q (refer as augmented
labeling space). This allows us to obtain segmentations
of instances of particular object categories which the
basic CRF formulation is unable to handle.

The joint posterior distribution of the segmentation
variables X and indicator variables Y can be written
as:

P(X,Y|(€) X ¢eRF(X|5) ¢0RF(Y|5) ¢con(X7Y|g) . (2)

The function ¢,rr takes the form of a CRF model
defined over object indicator variables as follows:

H e‘PC(YC) ,

ceCY

d’oRF (Y|5) = (3)

where the potential ¢.(Y;) is a cost function defined
over a set of indicator variables Y. indexed by ¢ € C¥,
and CY is the set of cliques of indicators. The potential
function ¢..n enforces that the segmentation and indi-
cator variables take values which are consistent with
each other (Fig. 2 (c)). The term is formally defined

1. We set the pre-trained detector threshold as -0.7.

as:

(bcon X Ylg

[ e

jeEQ

(4)

where ®(y,, X;) is the potential relating each indicator
y; with a set of image elements X; = {z;;i € V;}
corresponding to the set of segments V; of the jy,
hypothesis. Hence, the model energy can be written

as:
E(X)Y) = > te(Xe)+ > ®(y;, X
ceCX JjEQ
+ Z oY, ®)
ceCcY

The first term of the energy function is defined in a
manner similar to [11]. We describe other terms of the
energy function in detail in the following subsections.

3.1 Relating Y and X

The function ®(y;, X;) (Fig. 2(c)) is a likelihood term
that enforces consistency in the assignments of the
Jjtn indicator variable y; and a set of segmentation
variables X;. It is formally defined as:

inf if y; # 0(X;,15)
Oy Xg) = s - 1X51 20 ify; =0(X;,0) =1, (6)
0 if y; =6(X,,l;) =0

where j is the index of an object hypothesis in Q, the
function §( X, ;) indicates whether the majority of X
have object category label [;, and is defined as:

— IXJ(l )| > p(l])

L R(X;, 1) = )]

0 otherwise

0(X;,15) = { . )
where X;(I;) = {z; = l;;i € V;} is the set of image
elements in X, with label /;, |X. | is the total number
of elements in X, R(X;,l;) is the consistency per-
centage, and p(l;) € [0 1] is an object category-specific
consistency threshold. Hence, the first condition in
Eq. 6 and Eq. 7 ensures that y; = 1 if and only
if the ji;, hypothesis shares an object category with
at least p(l;) percent of image elements in X, (ie.
R(X;,l;) > p(l;)). The remaining conditions in Eq 6
show that this potential is an Occam razor or MDL
prior, similar to [6], [13] so that the model is penalized
by v, - |X;| when y; = 1.

3.2 Object indicator CRF

The object indicator CRF potential ¢.(Y.) in Eq. 5 can
be decomposed into two terms as follows,

DoY) =D wuly)+ Y elysur)

cecy JEQa (4. k)eU

)

where Q4 C Q is the set of hypotheses with geometric
properties and U is the set of pairs of indicators, which
interact with each other.
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Fig. 3: (a) Pairwise relationships between object hypotheses
can be determined by drawing an additional box with
respect to a reference box. (b) In this example, a person
(right) is “next-to” a person on the left side.

The term ¢, (y;) is the unary potential for an indi-
cator variable with geometric properties. It is defined
as:

ﬁj'|Xj|ZO, if ijO
» ) — p P P , 9
ou(yy) {O, if oy =1 )

such that the cost of suppressing hypothesis j (i.e.,
label y; is off) is 5, - | X;|, and 3 is the calibrated de-
tection confidence so that confidences are comparable
across object categories.

The term ¢, (y;,yr) (black edges in Fig. 2 (d)-Top)
represents the interactions between a pair of indica-
tor variables. Depending on the types of properties
associated with the pair of indicator variables, this
term can represent a number of relationships. It can
not only model spatial relationship in 2D such as the
ones learned and employed in the approach proposed
by [16], but also model behind and in-front relation-
ships given the depth property. The term can also
encode co-occurrence relationships [13] for pairs of
indicators with only category properties.

For a pair of indicators j and k, the term is formally
defined as:

ep(yjyue) = w’y, (yj,yx) - max(|X;], [ Xk)) . (10)
where 7, is the type of relationship that we want to
enforce between the pair of object instances j and k,
and is a subset of the overall relationship set R, which
is pre-defined as: R = {co-occur, above, below, next-to,
in-front, behind, overlap, and horizon lines agreement}.

The pseudo-boolean function

w;jj,klk(yjayk) : {0,1}2 —-R (11)
specifies the cost of all 4 possible combination of y;
and y;, under the relationship rj; for a pair of object
categories [;, ;. As a result, the potential can capture
both attractive (i.e., w(0,0)+w(1,1) < w(0,1)+w(1,0))
and repulsive (i.e., w(0,0)+w(1,1) > w(0,1)+w(1,0))
interactions. For example, a person usually is sitting
on a motorbike (attractive), and cars do not over-
lap with each other in 3D (repulsive). Notice that
although the relationship set R is pre-defined, the
parameters w(y;,yx) are learned jointly with other
model parameters as described in Sec. 5.

3.3 Pair-wise relationships between object hy-
potheses

The relationship rj; is specified by the properties
associated with the indicators j and k. If the indicators
i and j have geometric properties, geometric relation-
ships are determined by the following steps. Given a
pair of hypotheses, we firstly set the bounding box
of one hypothesis as a reference box. Then, we draw
additional boxes with respect to the reference box for a
certain spatial relationship (i.e. above: draw on top of a
box; next-to: draw on left or right side of a box, etc. See
Fig. 3 for details). If a drawn box overlaps more than
50% with the bounding box of the other hypothesis
which is not selected as the reference box, we can
specify a relationship to the given pair of boxes. If
none of the above relationships is selected and the two
original boxes overlaps each other more than 50%, we
use the depth property associated to the hypotheses
to select either overlap, in-front, or behind relationship.
The “horizon lines agreement” relationship is based
on whether the predicted two horizon lines from two
bounding boxes are in agreement or not. In specific,
horizon lines for two boxes are estimated assuming
objects’ average heights are known, similar to [18].
If two lines are close to each other within a certain
range, which is a function of the specific class (i.e.
person or car have smaller range, boat have a larger
range), they are having a same horizon line. On the
other hand, if the indicators ¢ and j have only object
category properties, the relationship ;, models the
co-occurrence cost of the object categories. In this case,
we further assume

w5 (Ui Yk) = {

Y =0 ify; =y =1

. , (12)
0 otherwise

where 7, ;, is the co-occurrence cost for object cate-
gories [; and [,. From the above definition, we can
see that our model generalizes both CRF models

proposed in [13], [16].

4 INFERENCE

We now show that the MAP inference problem in our
ACRF model can be solved by minimizing the energy
function using an efficient graph cut based expansion
move making algorithm [30].

Standard move making algorithms repeatedly
project the energy minimization problem into a
smaller subspace in which a sub-problem is efficiently
solvable. Solving this sub-problem produces a change
to the solution (referred to as a move) which results in
a solution having lower or equal energy. The optimal
move leads to the largest possible decrease in the
energy.

The expansion move algorithm projects the problem
into a Boolean label sub-problem. In an a-expansion
move, every segmentation variable X can either retain
its current label or transit to the label «. One iteration
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. . . . ~. o 1 — Org. :
of the algorithm involves making moves forallain L. X< Approx.| | >3 Approx.| !
successively. Under the assumption that the projection <~ : = '
of the energy is pairwise and submodular, it can be X : < :
exactly solved using graph cuts [41], [42]. Since our g : %‘ :
ACRF model is built on top of the basic CRF proposed - |
in [11], [30], in the following, we derive the graph . , = f

R(x)/p R(x)/p

construction only for energy terms related to indicator
variables Y. For the constructions of the basic CRF,
please refer to [11], [30].

4.1 Functions of indicator variables Y with only
category property.

The energy terms related to the indicator variables,
whose only property is a category label, are ®(y;, X;)
in Eq. 6, ¢p(y;,yx) in Eq. 10, and assumption in Eq. 12.
Observing that we can represent the combination of
these terms as a function, 7 : L — R as

FLY)) =min Y7y X))+ > enlyjue) ,

JEQe (4,k)eU.
(13)

where L(Y) = {l;;j € Q.,y; = 1} is a set of existing
object categories (i.e., y; = 1), Q. is any subset of the
indicator variables, whose only property is a category
label, and U, is a subset of U/ such that j, k € Q.. From
the definition of the term in section 3.1 and 3.2, we
can see that F({l;}) = v,|X;|. Furthermore,

F{l e}) = F{G ) + v | Xl
+ ;0 max(| X, [ Xkl) (14)
F{lles lg}) = F({lj, le}) + 7,1 Xl
+ 75,1, max(| X, | Xq|)
+ Vg 1, max(| X, [Xg|) . (15)

This shows that the above function satisfies the prop-
erties of the co-occurrence potential:

Ly C Ly = F(L1) < F(L2) , (16)

proposed by [13] which allows us to use their graph
construction for minimizing this energy function. We
estimate 7’s from the training data as described in
[13].

4.2 Functions of indicator variables Y with geo-
metric properties.

The energy terms related to the indicator variables
with geometric properties are ®(y;, X;) in Eq. 6 and
©p(y;,yk) in Eq. 10. Since it is essential to capture
both repulsive and attractive pair-wise relationships
for object instance hypotheses in ¢, (y;, yx), it cannot
be combined with ®(y,,X;) in Eq. 6 to form a co-
occurrence potential satisfying Eq. 15. Hence, we need
to introduce a new graph construction approach to
guarantee submodularity. In the following, we show
that by approximating ®(y;, X;), projecting the seg-
mentation variables X using a-expansion, and negat-
ing indicator variables Y dynamically in the expan-
sion algorithm, the projected function is guaranteed
to be submodular.

Fig. 4: Comparison between the original function ®(y, X;)
(blue lines) and the approximated function (red lines) in
Eq. 18 and 17. The left panel shows the case when y = 1.
The right panel shows the case when y = 0. Notice that
the dash blue lines indicate the sharp transition from finite
values to infinite values.

4.2.1 Approximating ®(y;, X;)
We observe in Eq. 6, when y; =1

D(y;, X;) = nf - AFO(X. L) =
Vi 0(XG, 1) =
1-R(X,,1)
~oa | X S T I 17
When y; =0
inf if §(X;,1) =1 R(X;,15)
Dy, X;) = 77 ~ ;| X;
(wj- %) {o if §(X;,1;) =0 | (1)
(18)
Hence, ®(y;, X;) becomes,
) x| [ L B L) o RBXGL L)
Q(y;, Xj) = 7| X;] (ZJJ 1— p(l;) + (1 —yy) o) (1)9 .

The effect of the approximation in Eq. 18 and 17
are shown in Fig. 4. Instead of imposing an infinite
cost when 6(X,[) # y, our approximation imposes a
cost which is linearly proportional to the consistency
percentage R(X,1). When y = 1, the ratio between the
consistency percentage and the consistency threshold
R(X,1)/p(l) are encouraged to be large, which means
that the more elements in X are labeled as [, the
better (Fig. 4-Left). In contrast, when y = 0, the ratio
between the consistency percentage and the consis-
tency threshold R(X,1)/p(1) is encouraged to be small,
which means that the less elements in X are labeled
as [, the better (Fig. 4-Right). Next, we introduce the
a-expansion and how to negate the indicator variables
Y dynamically in the expansion algorithm so that the
projected function is guaranteed to be submodular.

4.2.2 «-expansion move and dynamical negation al-
gorithm

We define the transformation function T, (z;;t;) for
the a-expansion move which transforms the label of
a random variable z; as:

Ta(aji,ti) _ {0[7 if ti =0 (20)

ZTi, if ti =1
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The corresponding a-expansion move energy for
the term in Eq. 19 can be written as: ®(y;,T;) =
w|X»|{%( ~ R(X50) + Siev,a,)

(1-t;)
\X|)
+os Sievup 1erhif a £
41X I{1 5 (R(X L) + Xiev\w,a )(}Qf]‘))
\XI} ifa=1l;

+1 o( l i) ZZEV \V;(
(21)

where T = {t;;i € V,} is a set of transformed binary
variables, V;(l;) = {i;z; = I;} N {i € V;} is the set
of image elements with label I;, V; \ V;(l;) is the
remaining set of elements in V; with labels other than
l; (e {t;2; # 1;} N{i € V;}). Most importantly, we
observed that when a#lj the function is submodular
in (y;,t;), but when o = l it is submodular in (7;,t;),
where y; = 1—y; is the negatlon of y;. This motivates
us to dynamically negate a subset of the indicator
variables according to the category labels {/;}.

4.2.3 Probing v, (y;,yx)

The graph construction of the pair-wise instance in-
dicators in Eq. 10 is equivalent to the construction
of binary variables which is described in [30]. How-
ever, there is one issue that we need to resolve in
order to ensure submodularity of the pair-wise binary
function. First of all, since it is essential to capture
both attractive (i.e., both indicators having the same
labels) and repulsive (i.e., both indicators having dif-
ferent labels) relationships, some pair-wise functions
©p(y;,yr) will be submodular and others will be non-
submodular in (y;, yx). Therefore, we need to fix the
negating pattern of the indicator variables. However,
this contradicts with the dynamic negating approach
described in the previous section.

Fortunately, a simple approach “probing” the indi-
cator variables similar to the one described in [31] can
effectively handle the non-submodular function, since
each indicator only interacts with a small number of
nearby indicators. The probing approach randomly
fixes a small set of indicator variables {y;;j € Qi },
where the contradiction between the fix negating
pattern and dynamic negating algorithm takes place.
As a result, the pair-wise function is ensured to be
submodular. Notice that our inference algorithm does
not rely on sophisticated techniques such as QPBO
[31] which requires more memory and computation
time.

4.3 Overall projected energy function

At each iteration of the a-expansion, the terms of the
original model energy (Eq. 5) becomes a pairwise and
submodular function of 7', Y, and Y. The overall pro-
jected energy function (except the function in Eq. 13)

becomes,
BE(T.Y,Y) =) ve(Te)+ D ®y;,T)+ Y (7;T)
ceCX Jj€Qa j€EQw
+ Z ¢P(yj7yk)
(J€Qa,k€Qa)U(j,k)EUy
+ > (T, Ti)

(1€Qa,k€Qw)U(4,k)EU,

+ 2

(1€ Qa k€Qw)U(j, k) EU
where Q. = {j;1; # o}\ Qriay Q& = {J;l; = a}\ Qrias
and Uy = U\U,. Therefore, we will construct the graph
using T, partially using indicator Y = {y;;j € Qa},
and partially using the negation of indicator ¥ =
{U;;5 € Qa} depending on whether I; = «a. Notice
that Qy;, is randomly selected at every iteration.
Therefore, no indicator variable is always fixed. The
a-expansion algorithm eventually converges to a local
optimal solution.

Pp (ijyk) : (22)

5 LEARNING

The full ACRF model in Eq. 5 contains several terms.
In order to balance the importance of different terms,
we introduce a set of linear weights for each term as
follows,

WT\II(Xy Y) = Z wcwc(xc) + Z w:jﬁk (ijyk)
cecX (J,k)EUq
n ST Wt (1) (@ (s X5) + pulyy)
J€EQd
+owC Y epiuR) + Y Py X)),
(j,k)eU. JEQc
(23)

where w. models weights for unary, pair-wise, and
higher-order terms in X. w*(l) is the object category
specific weight for unary term in y, w® is the weight
for hypothesis with only category label, and wljk is
the weight for a pair of object categories [}, with
the relationship type r;;, in Eq. 10. Recall from Sec. 3.2
and 4 that Q4 and Q. are the set of hypotheses with
geometric properties and with only category label,
respectively. Similarly, Uy and U, are the subset of U
such that j,k € Q4 and j,k € Q., respectively. Notice
that the function V(X Y, I) also depends on the image
evidence I. We typically omit the image evidence I for
simplicity. Since all these weights are linearly related
to the energy function, we formulate the problem of
jointly training these weights as a Structured SVM

(SSVM) learning problem [29] similar to [16].
Assuming that a set of example images, ground
truth segment object category labels, and ground truth

%‘tﬁ]ect boundm% boxes {I", X", Y"},=1,. N are given.
e SSVM problem is as follows,
minwezo WIW+CY €4(X,Y) (24)
s.t. !
€(XY) = max(AX,Y;X",Y")

+Whe (X" Yy 1Y) - W (X, Y, 1), Vn ,
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where W concatenates all the model parameters
which are linearly related to the potentials ¥(X,Y); C
controls the relative weight of the sum of the violated
terms {£"(X,Y)} with respect to the regularization
term; A(X,Y; X" Y™) is the loss function that gener-
ates large loss when the X or Y is very different from
X" or Y". Depending on the performance evaluation
metric, we design different loss functions as described
in the Sec. 5.1

Following the SSVM formulation, we propose to
use a stochastic subgradient descent method to solve
Eq. 24. The subgradient of 9w ™ (X,Y) can be cal-
culated as U(X™, Y") — U(X* Y*), where (X*,Y*) =
argminy,y (WU (X, Y)-A(X,Y; X", Y")). When the
loss function can be decomposed into a sum of local
losses on individual segments and individual detec-
tions, (X*,Y™) can be solved using graph-cut similar
to the inference problem (Sec. 4). For other compli-
cated loss functions, we found that it is effective to set
(X*,Y*) approximately as argminyy WTW¥(X,Y),
when the loss is bigger than a threshold.

The remaining model parameters are set as follows.
The object category-specific consistency threshold p(1)
in Eq. 6 are estimated using the median values ob-
served in training data. The 7 involved in Eq. 13 are
estimated from the MSE as described in [13]. The 3 in
Eq. 9 are set to be the calibrated detection confidence
such that 8 > 0. The unary potentials in 1.(X.) are
obtained from off-the-shelf stuff classifiers [13], [43]
(see details in Sec. 6). The pair-wise potentials in
1c(X.) are modelled using codebook representations
similar to [40].

5.1

For the experiments on Stanford dataset, the perfor-
mance is measured by the pixel-wise classification
accuracy (ie, percentage of pixels correctly classified),
and the detection accuracy. We define the loss function
AX,Y; X", Y™) as the sum of segmentation loss
A(X; X™) and the detection loss A(Y;Y™).

The segmentation accuracy is measured by

Loss Function

true positive
true positive+ false negative -

(25)
Hence, the segmentation loss A(X; X™) is defined as

AXGX) = 5 Wi #alenll)

i€V

(26)

where V captures the indices for the set of segments,
1{STATEMENT}is 1if the STATEMENT is true,
¢z (l;) is the object category I; specific cost (used to re-
weight the loss contributed from different object cat-
egories), and Q = .y, c;(l;). Therefore, the overall
segmentation loss can be decomposed into a sum over
local loss for each segment 1 1{x; # 7 }c.(l;).
The detection loss A(Y;Y™) is defined as
AT = 20 U £ 9 dey 1)

i€Qq

27)

where Q, captures the indices for the set of detections,
M =3 czcy(l;). Similarly, the overall detection loss
can be decomposed into a sum over local loss for each
detection - 1{y; # y"}c, (Li).

For the experiments on the PASCAL dataset,
the overall loss function A(X,Y;X™ Y™) is simi-
larly decomposed into sum of the segmentation loss
A(X; X™) and the detection loss A(Y;Y™). The de-
tection loss is the same as before. However, since the
segmentation performance is measured differently by

true positive
true positive+ false positive + false negative

, (28)

the segmentation loss is defined as 1-segmentation
performance. Notice that the segmentation loss
cannot be decomposed into a per segment loss.
Therefore, we obtain (X*,Y*) approximately as
argminy.y WTU(X,Y), when A(X* Y*; X" Y™") is
bigger than a threshold.

6 EXPERIMENTS

We compare our full ACRF model with [13], [21],
[32], [44], [45] on the Stanford Background (referred
to as Stanford) dataset [21] as well as with sev-
eral state-of-the-art techniques on PASCAL VOC 2009
segmentation (referred to as PASCAL) dataset [46].
As opposed to other datasets, such as MSRC [27],
Stanford dataset contains more cluttered scenes and
more object instances per image. Hence, segmenting
and detecting “things” is particularly challenging.
The challenging PASCAL segmentation dataset con-
tains a large number of “things” labels with a single
“stuff/background” label. However, the dataset con-
tains a limited number of object instances in each im-
age which is less ideal to demonstrate the importance
of pair-wise relationships between object hypotheses.
Implementation details. For all the experiments be-
low, we use the same pre-trained LSVM detectors [1]
to obtain a set of object hypotheses with geometric
properties for “things” categories (e.g., car, person,
and bike). The object depths are inferred by combin-
ing both cues from the size and the bottom positions
of the object bounding boxes similar to [18], [19], [24].
The subset of segments V associated to each object
hypothesis is obtained by using the average object
segmentation in the training set. In detail, for each
mixture component in LSVM, we estimate the average
object segmentation and use it to select the set of
segmentation variables overlapped with the average
object segmentation. The responses from off-the-shelf
stuff classifiers are used as the unary stuff potentials
in our model. On Stanford dataset, we use the STAIR
Vision Library [43] that was earlier used in [21]. On
PASCAL dataset, we use only the pixel-wise unary
responses from the first layer of the hierarchical CRF
[13]. We model different types of pair-wise stuff rela-
tionships using a codebook representation similar to
[47]. The following geometric pair-wise relationships
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CRF 904 | 72.8 | 86.1 91.8 | 63.0 | 81.2 | 56.7 77.4 49.1 | 39.9 153 | 76.3 189 | 65.0 | 70.4 | 17.3 799 | 47.7
C+D 924 | 742 | 88.0 | 88.6 | 672 | 849 | 445 77.1 56.7 | 61.7 9.3 69.7 | 369 | 88.1 62.8 | 64.2 82.0 | 58.5
ACRF | 919 744 | 87.3 88.5 69.4 | 846 | 445 77.2 74.9 60.1 17.2 79.4 | 36.9 88.6 | 58.2 64.7 82.4 61.9

TABLE 1: System analysis of our model on the Stanford dataset. The CRF row shows the results of the basic CRF model
which uses only the stuff-stuff relationship component (first term in Eq. 5) of our ACRF model. The C+D row shows results
by adding object hypothesis indicators obtained from pre-trained detectors to the CRF model (first two terms in Eq. 5).
The last row shows results of the full ACRF model. Notice that in the “Background” column, we treat all background
classes as a general background class. Our ACRF model improves the average accuracy for a significant 14% compared
to the basic CRF model.

(a) Global Accuracy Recall |Background Car Person Motorbike Bus Boat Cow Sheep Bicycle||Global| Avg.
[44] 21] [45] 137] [13] | ACRE 60% 77.2 71.5 60.3 17.2 80.7 35.1 88.6 58.2 615 823 | 61.1
775 | 764 | 769 | 80.2 30.0 824 40% 77.2 59.1 53.8 17.2 77.7 31.2 79.2 58.2 405 81.0 | 54.9

: : : : : - 20% 773 532 478 172 758 242 736 582 371 || 805 |56

TABLE 2: Segmentation performance comparison on the Stanford dataset. (a) Global accuracy of our ACRF model
compared to state-of-the-art methods. (b) Sensitivity analysis of our segmentation accuracy affected by the quality of
the detectors on Stanford dataset. Notice that the average accuracy decreases only gradually when the maximum recall

decreases.

(a) Original image Ground truth

Segmented labels Segmented instances (b)

""" ACRF (Ours)

025

LSVM

Ry A
0 0.1 0.2 0.3 0.4 0.5
FPPI

Fig. 5: (a) Typical thing segmentation results on the Stanford dataset. Notice that our model can obtain instance-based
segmentations (last column) due to the ability to reason in the augmented labeling space Q. (b) Recall v.s. FPPI curves of
our ACRF and LSVM on the Stanford dataset. Our ACRF achieves better recall at different FPPI values.

are used for the experiments to incorporate geometric
relationship between two object hypotheses: next-to,
above, below, in-front, behind, overlap. On top of that, we
have one additional geometric relationship based on
horizon lines agreement between two hypotheses. The
types of relationships are determined as described in
Sec. 3.3. All models are trained with object bounding
boxes and pixel-wise class supervisions.

6.1 Stanford dataset

The Stanford dataset [21] contains 715 images from
challenging urban and rural scenes. On top of 8 back-
ground (“stuff”) categories, we annotate 9 foreground
(“things”) object categories - car, person, motorbike,
bus, boat, cow, sheep, bicycle, others. We follow the 5-
fold cross-validation scheme which splits the data into
different set of 572 training and 143 testing images. In
Table 2(a)?, our ACRF model outperforms state-of-the-
art methods [13], [21], [32], [44], [45] in the percentage
of pixels correctly classified as either one of the eight
background classes, or a general foreground class
(referred to as global accuracy).

Global accuracy v.s. average accuracy. The global
accuracy is not ideal to highlight the accuracy gain
of our method in foreground classes, since it ignores

2. We implement [13], [32] by ourselves and evaluate the perfor-
mance.

classification errors in fine foreground classes and
the number of background pixels clearly outnumbers
the number of foreground pixels. Hence, we report
per class accuracy and the uniform average accuracy
across a general background class and 8 foreground
classes (referred to as average accuracy) in Table 1,
Table 2(b), and Table 5.

In Table 1, the performances of most foreground
classes (seven out of eight) are significantly improved
when additional components are added on top of
the basic CRF model. As a result, the full ACRF
model obtains a 14.2% average improvement over the
basic CRF model. Typical results are shown in Fig. 9-
Top. Using our efficient inference algorithm, inference
takes in average 1.33 seconds for each image which
has 200 to 300 super-pixels on a Intel(R) Xeon(R) CPU
@ 2.40GHz. We highlight that our model can generate
object instance-based segmentations due to the ability
to reason in the augmented labeling space Q (Fig. 5(a)).

Another advantage of using our model is to im-
prove detection accuracy. We measure detection per-
formance in terms of Recall v.s. False Positive Per
Image (FPPI) in Fig. 5(b), where detection results from
5-fold validations are accumulated and shown in one
curve. The performance of the proposed model is
compared with the pre-trained LSVM [1]. Our model
achieves consistent higher recall than the LSVM base-
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CRF 69.0] 19.7] 24| 88| 6.8| 88| 21.6| 175 13.1| 0.5| 86| 71| 65| 6.5 13.8] 19.2| 58| 13.6| 3.3| 21.3] 9.5( 13.5
CRF+Det| 71.0] 21.8| 14.8| 21.1| 18.7| 34.8| 48.3| 33.3| 16.7| 12.3| 27.5| 10.5| 14.1| 27.5| 35.4| 31.2| 29.8| 28.7| 17.5| 31.8| 27.7|| 27.3
ACRF 75.5| 29.1| 14.7| 23.0| 18.2| 34.0| 47.8| 40.4| 17.2| 11.4| 27.0| 12.6| 17.5| 30.1| 40.1| 34.9| 30.6| 28.2| 20.7| 31.0{ 30.1|| 29.4
TABLE 3: The segmentation accuracy of different variants of our model (i.e., CRF, CRF+ Detection, and full ACRF models)
on PASCAL dataset.

BONN | CVC | NECUIUC_CLS | ACRF | UoCTTI | NECUIUC_SEG | LEAR | BROOKES | UCI | MPI

36.3 34.5 29.7 294 29.0 28.3 25.7 24.8 24.7 15.0

TABLE 4: Average segmentation accuracy of our ACRF model compared to other state-of-the-art methods on PASCAL
dataset.

g . . .

g ) in Table 5) do not consistently improve the accu-
g g s 8 || = racy of all categories compared to CRF+Det (middle
Q ,&D 8 ] - % < e} - . . . .
g ¢ = & g 2 § ¢ 8 % 2 <%° row in Table 1). Moreover, all geometric relationships
CarPersonl 771 669 585 146 792 369 856 582 eas(saiieoy| collectively contribute to the accuracy improvement,
CarBus 772 730 582 17.2 673 369 88.6 583 64.7|[822|603| Since our model is still better than CRF+Det when
All 772 56.8 599 9.1 69.5 37.2 90.3 61.2 64.1][82.0]58.4| the geometric relationships of two most frequently co-

TABLE 5: Segmentation accuracy on the Stanford dataset
when the pair-wise geometric relationships are partially
(e.g., car and person, or car and bus geometric relation-
ships removed) or totally (i.e., all geometric relationships)
removed.

line at small number of FPPI as shown in Fig. 5(b).

Since our method utilizes pre-trained object detec-
tors to obtain a set of plausible object hypotheses,
we evaluate the segmentation accuracy given worse
detectors to see how our method depends on the
quality of the detectors. We simulate a worse detector
by reducing the number of recalled objects in the set
of plausible detections. As shown in Table 2(b), the
average accuracy decreases only gradually when the
maximum recall decreases. Notice that, even when
the recall is only 20%, our ACRF model still achieves
accuracy better than the basic CRE.

6.2 PASCAL dataset

This dataset contains 14, 743 images with 21 categories
including 20 thing categories and 1 stuff category.
Only a subset of images have segmentation labels, and
we used the standard split for training (749 images),
validation (750 images), and testing (750 images). A
system analysis of our model (Table 3) shows that the
performances of most classes were improved when
additional components are added on top of the basic
CRF model. However, our ACRF model is able to
significantly boost up the performance and achieves
competitive accuracy compared to other teams in the
challenge (ranked in 44, in Table 4). Typical results are
shown in Fig. 9-Bottom.

6.3 Relationship Analysis

We found that the pair-wise geometric relationships
contribute to the accuracy improvement of our ACRF
model more than the co-occurrence relationships,
since CRF+Det+co-occurrence relationships (Last row

occurred pairs of object categories, namely car v.s. per-
son and car v.s. bus, are removed, respectively (First
two rows in Table 5). The learned relation parameters
of the two most frequently co-occurred pairs of object
categories are visualized in Fig. 6(a,b). Nevertheless,
the learned relationships sometime introduce errors.
We show the failure cases in Fig. 7.

Ground T_h

@ 7 g g

Fig. 7: Failure cases analysis. Panel (a) shows the case
when the learned pairwise relationship between a car and
a person next-to each other does not match to the existing
relationship in the test image. As a result, the false alarm of
a car (red box) appears with ACRF. (b) The typical example
when depth heuristic fails. The yellow car in the center
of the image is successfully detected and segmented with
a CRF+Det model. However, it fails to detect with ACRF
model, because the depth is not correctly inferred due to
the fact that the height of the yellow car is not close to the
average height of the cars in the training set.

In Fig. 6(c), we evaluate the percentage of pairs of
true positive object detections for each relationship.
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(a) Car wrt Bus (b) Car wrt Person ¢,

[
[
E

(c) Before BL1 BL2 | ACRF
next-to 5.4% 25.9% | 32.2% | 92.5%
above/below 6.1% | 51.72% | 61.2% | 76.2%
in-front/behind 5.7% 50.0% | 60.4% | 72.3%
different horizon | 0.1% 38.5% | 15.0% | 60.0%

Fig. 6: Examples of the learned pair-wise relationships between object hypotheses are visualized in panel (ab). The
grayscale color code indicates to what degree the relationship is likely (white means it is likely, black means it is unlikely).
Our model learned that (a) a car is likely to be in front of a bus, and a car is unlikely to be below a bus, (b) a car is likely to
be behind a person. (c) Prediction accuracy of the objects co-occurrence for each type of relationship averaged over 5-fold
validations. The first and last columns show the accuracy before and after applying inference on our full ACRF model,
respectively. Notice that there is a consistent improvement across all types. The performance of two baseline methods are
reported in the middle two columns which are all inferior then our results.

Before (i.e., raw detections from LSVM [1]) applying
inference, the percentage is fairly low since there are
many false positive detections. After applying our
ACRF model, the percentage increases dramatically as
expected. We also outperform two stronger baseline
methods aiming at pruning out incorrect pairs of ob-
ject hypotheses for each relationship as defined below.
BL1 uses only the detection confidence to prune out
detections. In specific, for each pair of detections with
a certain relationship, we assign a score as a sum of
scores for both bounding boxes from LSVM. Then,
we sample p% of pairs with highest scores, where p
is the percentage of pairs of true positive detections
for a certain relationship from the training set. BL2
incorporates pairwise object interactions and prune
out detections. Again, for each pair of detections
with a certain relationship, we assign a score as a
sum of detection scores for both detections. Then, we
sample pairs within top p(ci1, c2)%, where p(ci,¢2) is a
class-pair specific percentage of pairs of true positive
detections from the training set, and ¢; and ¢y is
classes corresponding to two bounding boxes.

Using the inferred relationships we can provide
high level geometrical description of the scene and
determine properties such as: object z is behind object
y. Finally, we can obtain 3D pop-up models of the
scene from a single image as in Fig. 8

CRF+Det ACRF

Ground Truth

Fig. 8: 3D pop-up models from the Stanford
dataset. Videos related to above 3D  pop-up
models can be found in the project age:

www.eecs.umich.edu/vision/projects/ ACRF/ACRFproj. html (131

7 CONCLUSION

We have presented a unified CRF-based framework
for jointly detecting and segmenting “things” and
“stuff” categories in natural images. We have shown
that our framework incorporates in a coherent fashion
various types of (geometrical and semantic) contex-
tual relationships via property interactions. Our new
formulation generalizes previous results based on
CRF where the focus was to capture the co-occurrence
between stuff categories only. We have quantitatively
and qualitatively demonstrated that our method: i)
produces better segmentation results than state-of-the
art on the Stanford dataset and competitive results on
PASCAL'09 dataset; ii) improves the recall of object in-
stances on Stanford dataset; iii) enables the estimation
of contextual relationship among things and stuff. Ex-
tensions for future work include incorporating more
sophisticated types of properties.
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