
categories to instance-speciÞc labels. Finally, the special
design of model potentials allows us to utilize a combina-
tion of state-of-the-art discrete optimization techniques to
achieve efÞcient inference which takes a few seconds per
image in average using a single core.

Object hypotheses and property lists.Our framework
extends the basic conditional random Þeld (CRF) formula-
tions for scene segmentation (i.e., assigning an object cate-
gory to each segmentation variable X) [11], [27] by
introducing the concept of a Ògeneric object hypothesisÓ
described by a property list (Fig. 2-Top). Instead of only
capturing the semantic property of the hypothesis using
an object categorical label l in the basic conditional ran-
dom Þeld, we allow the list to include geometric proper-
ties, such as the 2D location ðu; vÞ, the distance from the
camera (depth) d, and the set of segments V associated
with the object hypothesis. Notice that the generic object

hypothesis naturally describes the existence of an object
instance with respect to the camera. Hence, our scene seg-
mentation framework can not only segment a scene into
different object categories but also into object instances
with different properties (i.e., things) as shown in Fig. 1d.
Thus, it generalizes the work of Barinova et al. [6], [28].

We augment the above-mentioned CRF formulation with
object hypothesis indicator (binary) variables which capture
the presence or absence of object hypotheses (see the solid
(on state) and dash (off state) nodes in Fig. 2a-Top). We refer
to our model as the augmented CRF, or ACRF, to highlight
the newly added object hypothesis indicator variables. Two
additional relationships are captured in our ACRF. First,
the state of the indicator variable needs to be consistent
with the assignment of the segmentation variables associ-
ated with the corresponding object hypothesis. We intro-
duce a novel higher-order potential function to penalize, for

Fig. 2. Our augmented CRF model (ACRF). Panel (a) illustrates that our model jointly segments the image by assigning labels to segments (bottom
layer) and detects object by determining which object hypotheses exist (top layer). The existence of the hypotheses is indicated by solid (on) and
dash (off) nodes. As shown on the top panel, each �thing� object hypothesis possesses properties such as category, location ðu; vÞ, etc. On the other
hand, each �stuff� object hypothesis possesses only the category label. In panel (b), we give examples of relationships established via property inter-
actions. For �thing� categories, geometric relationships such as behind and above can be established. On the other hand, for �stuff� categories,
semantic relationship such as co-occurrence can be established. Notice that the two edges, which connect to the stuff categories and end in the
dashed separator line, represent the co-occurrence relationships between stuff and all thing categories. In panel (c), the �gure shows the label space
of the segmentation variables X (color-coded blocks) and the indicator variables Y (0 and 1 blocks). The higher-order potential capturing the relation-
ship between indicator i and a set of segmentation variable in Vi is represented by an edge between a node on top layer and a set of nodes at the bot-
tom layer. In panel (d)-Bottom, the �gure shows the pairwise and higher order potential among segmentation variables X which are presented in the
basic CRF formulation. In panel (d)-Top, the �gure shows the pairwise potential between pairs of indicator variables Y which encodes different geo-
metric and semantic relationships.

Fig. 1. Our goal is to segment the image into things (e.g., cars, humans, etc.) and stuff (e.g., road, sky, etc.) by combining segmentation (bottom) with
object detection (top). Results from different variants of our method (capturing a subset of critical contextual relationships) are shown from left to right
columns. At the top of each column, we show the top 4 probable bounding boxes, where light and dark boxes denote the con�dence ranking from
high to low. Instance-based segmentation are shown in each bottom column, where different colors represent different object instances, and all stuff
categories are labelled with white color to make the �gure less cluttered. The CRF+Det model enforces the detections to be consistent with the seg-
ment labels. While the green car segments are reinforced by the strong (white) car detection, very weak (dark) false detections are also introduced
due to noisy segment labels in the background region. On the other hand, our �nal ACRF captures the key relationships so that it recovers many
missing detections and segmentation labels. Thing-Stuff and Thing-Thing relationships are indicated by color-coded arrows connecting bounding
boxes and/or segments. Different color codes indicate different types of relationships.
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the Þrst time, both types of inconsistency: i) the indicator is
off but many segments in set V are still assigned to the cor-
responding hypothesis; ii) the indicator is on but only a few
segments in setV are assigned to the corresponding hypoth-
esis. Second, the object indicator variables allow us to easily
encode sophisticated semantic and geometric relationships
between pairs of object hypotheses. For instance, simple
pairwise potentials deÞned over object indicator variables
can allow to incorporate i) 2D geometric relationships such
as ÒaboveÓ which models the property that one hypothesis
lies above the other (e.g., a person sitting on a bike), ii) 2.5D
depth-ordering and occlusion relationships such as Òin-
frontÓ which models the property that one hypothesis lies
in front of the other (e.g., a person standing in front of a
car). More sophisticated relationships such as a composition
of these basic 2D or 2.5D relationships can also be sup-
ported. Critically, the ACRF model generalizes Ladicky
et al.Õs model [13] capturing stuff-stuff co-occurrence con-
textual relationships only. In contrast, our model can
encode relationships between generic object hypotheses
(both things and stuff) depending on their semantic and
geometrical properties. We illustrate the efÞcacy of our
approach in Fig. 1. As seen in the Þgure, detections typically
do not agree with the segmentation results (Fig. 1b if the
detection and segmentation are applied separately. A model
capturing relationships among object hypothesis and seg-
ments ensures consistency between detection and segmen-
tation results (Fig. 1c). However, the relationships between
object hypotheses are ignored. Hence, false object hypothe-
ses sometime are introduced. Finally, when pair-wise rela-
tionships of object hypotheses (e.g., next-to, behind, etc.) are
included, even small object instances, that are hard to detect
and segment, can be discovered (Fig. 1d).

Learning. Given the property list, a pre-deÞned set of
pair-wise relationships of object hypotheses are encoded in
our model via property interactions as described in Section
3.3. The likelihood of the relationships are treated as model
parameters that are learned from training data. For exam-
ple, the model should learn that a person is likely to sit on a
motorbike, and cow and airplane are unlikely to co-occur.
In our model, a likely relationship will add a negative cost
to the energy of the model. On the other hand, an unlikely
relationship will add a positive cost. We formulate the prob-
lem of learning these costs jointly with other parameters as a
Structured SVM (SSVM) [29] learning problem with two
types of loss functions related to the segmentation loss and
detection loss, respectively (see Section 5 for details).

MAP Inference.Jointly estimating the segmentation varia-
blesX and indicator variables Y (see nodes in Fig. 2c) is chal-
lenging due to the intrinsic difference of the indicator and
segmentation variable space, and newly added complex rela-
tionships between them (see edges in Figs. 2c, and 2d). We
design an efÞcient graph-cut-based move making algorithm
by combining state-of-the-art discrete optimization techni-
ques. Our method is based on the a-expansion move making
approach [30], which works by projecting the energy mini-
mization problem of segmentation variables X into a binary
energy minimization problem to have the same space as the
indicator variables Y . We use the ÒprobingÓ approach simi-
lar to the one introduced by Rother et al. [31] to handle the
non-submodular function describing pair-wise relationships

of object hypotheses. Our MAP inference algorithm takes
only a few seconds per image in average using a single core
as opposed to Þve minutes by Gould et al. [22].

Outline of the Paper.The rest of the paper is organized as
follows. We Þrst describe the related work in Section 2.
Model representation, inference, and learning are elabo-
rated in Section 3, 4, and 5, respectively. Implementation
details and experimental results are given in Section 6.

2 RELATED WORK

Our method is closely related to the following three meth-
ods which all can be considered as special cases of our
model. Desai et al. [16] propose a CRF model capturing
thing-thing relationships and show that object detection
performance can be consistently improved for multiple
object categories. Their model can be considered as a special
case of our model when no segmentation variable X exists.

Both Ladicky et al.Õs methods [13], [32] extend the basic
CRF model to incorporate more sophisticated relationships.
Ladicky et al. [32] incorporate things-stuff relationships and
demonstrate that the information from object detection can
be used to improve the segmentation performance consis-
tently across all object categories. Their model can be con-
sidered as a special case of our model when no thing-thing
relationship is incorporated. One more subtle difference is
that their model only weekly enforces the consistency
between things and stuff. Their model does not penalize the
case when the indicator is off but many segments are still
assigned to the corresponding hypothesis. Notice that the
strong consistency of things-stuff in our model is crucial in
combination with thing-thing relationships. Otherwise,
many segments will still be assigned to the corresponding
hypothesis even when the hypothesis is suppressed by
thing-thing relationships. Ladicky et al. [13] propose to cap-
ture co-occurrence types of object relationships and demon-
strate that the co-occurrence information can be used to
improve the segmentation performance signiÞcantly. Their
model can also be considered as a special case of our model
when no geometric relationships of object hypotheses (i.e.,
above, same horizon, etc.) are established. Finally, [13] can-
not be used to assign segments to object instances or localize
object instances. Our results on the Stanford dataset demon-
strate that our model achieves superior performances than
[13], [32].

Our method shares similar ideas with Yao et al. [33] to
jointly model object detection and scene segmentation.
However, there are two main differences. Yao et al. also
jointly model scene classiÞcation problem and use the scene
class to restrict the possible object categories existing in an
image. Therefore, they need to apply a set of pre-trained
scene classiÞers in addition to the object detectors and
scene segmentation methods. Moreover, their model does
not incorporate thing-thing geometric relationships. Their
model ignores facts such as cars are typically Ònext-toÓ
each other and cups are Òon-topÓ a table. As a result, their
method works well on datasets which contains only few
object instances (typically less than 3) such as the MSRC
dataset [27]. On the contrary, our experimental results
show that our method works well on datasets containing
many more object instances such as Stanford dataset [21].
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determined by the following steps. Given a pair of
hypotheses, we Þrstly set the bounding box of one hypoth-
esis as a reference box. Then, we draw additional boxes
with respect to the reference box for a certain spatial rela-
tionship (i.e., above: draw on top of a box; next-to: draw on
left or right side of a box, etc. , see Fig. 3 for details). If a
drawn box overlaps more than 50 percent with the bound-
ing box of the other hypothesis which is not selected as
the reference box, we can specify a relationship to the
given pair of boxes. If none of the above relationships is
selected and the two original boxes overlaps each other
more than 50 percent, we use the depth property associ-
ated to the hypotheses to select either overlap, in-front, or
behind relationship. The Òhorizon lines agreementÓ rela-
tionship is based on whether the predicted two horizon
lines from two bounding boxes are in agreement or not. In
speciÞc, horizon lines for two boxes are estimated assum-
ing objectsÕ average heights are known, similar to [18]. If
two lines are close to each other within a certain range,
which is a function of the speciÞc class (i.e., person or car
have smaller range, boat have a larger range), they are
having a same horizon line. On the other hand, if the indi-
cators i and j have only object category properties, the
relationship rjk models the co-occurrence cost of the object
categories. In this case, we further assume

wco
j;kðyj; ykÞ ¼ g lj;lk � 0 if yj ¼ yk ¼ 1

0 otherwise;

�
(12)

where g lj;lk is the co-occurrence cost for object categories lj
and lk. From the above definition, we can see that our model

generalizes both CRF models proposed in [13], [16].

4 INFERENCE

We now show that the MAP inference problem in our ACRF
model can be solved by minimizing the energy function
using an efÞcient graph cut based expansion move making
algorithm [30].

Standard move making algorithms repeatedly project the
energy minimization problem into a smaller subspace in
which a sub-problem is efÞciently solvable. Solving this
sub-problem produces a change to the solution (referred to
as a move) which results in a solution having lower or equal
energy. The optimal move leads to the largest possible
decrease in the energy.

The expansionmove algorithm projects the problem into a
Boolean label sub-problem. In an a-expansion move, every

segmentation variable X can either retain its current label or
transit to the label a. One iteration of the algorithm involves
making moves for all a in L successively. Under the
assumption that the projection of the energy is pairwise and
submodular, it can be exactly solved using graph cuts [41],
[42]. Since our ACRF model is built on top of the basic CRF
proposed in [11], [30], in the following, we derive the graph
construction only for energy terms related to indicator vari-
ables Y . For the constructions of the basic CRF, please refer
to [11], [30].

4.1 Functions of Indicator Variables Y with Only
Category Property

The energy terms related to the indicator variables, whose
only property is a category label, are Fðyj; XjÞ in Eq. (6),
’pðyj; ykÞ in Eq. (10), with assumption in Eq. (12). Observing
that we can represent the combination of these terms as a
function, F : L ! IR as

FðLðY ÞÞ ¼ min
X

X
j2Qc

Fðyj; XjÞ þ
X

ðj;kÞ2Uc

’pðyj; ykÞ; (13)

where LðY Þ ¼ flj; j 2 Qc; yj ¼ 1g is a set of existing object cat-

egories (i.e., yj ¼ 1), Qc is any subset of the indicator variables,

whose only property is a category label, and Uc is a subset of U
such that j; k 2 Qc. From the definition of the term in Sections

3.1 and 3.2, we can see that FðfljgÞ ¼ g lj jXjj. Furthermore,

Fðflj; lkgÞ ¼ FðfljgÞ þ glk jXkj
þ g lj;lk maxðjXjj; jXkjÞ;

(14)

Fðflj; lk; lqgÞ ¼ Fðflj; lkgÞ þ g lq jXqj
þ g lj;lq maxðjXjj; jXqjÞ
þ g lk;lq maxðjXkj; jXqjÞ:

(15)

This shows that the above function satisfies the properties of

the co-occurrence potential

L1 	 L2 ¼) FðL1Þ 
 FðL2Þ; (16)

proposed by [13] which allows us to use their graph construc-

tion for minimizing this energy function. We estimate g’s from

the training data as described in [13].

4.2 Functions of Indicator Variables Y with
Geometric Properties

The energy terms related to the indicator variables with
geometric properties are Fðyj; XjÞ in Eq. (6) and ’pðyj; ykÞ
in Eq. (10). Since it is essential to capture both repulsive
and attractive pair-wise rela tionships for object instance
hypotheses in ’pðyj; ykÞ, it cannot be combined with
Fðyj; XjÞ in Eq. (6) to form a co-occurrence potential sat-
isfying Eq. (16). Hence, we need to introduce a new
graph construction approach to guarantee submodular-
ity. In the following, we show that by approximating
Fðyj; XjÞ, projecting the segmentation variables X using
a-expansion, and negating indicator variables Y dynami-
cally in the expansion algorit hm, the projected function
is guaranteed to be submodular.

Fig. 3. (a) Pairwise relationships between object hypotheses can be
determined by drawing an additional box with respect to a reference
box. (b) In this example, a person (right) is �next-to� a person on the left
side.
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4.2.1 Approximating Fðyj; XjÞ
We observe in Eq. (6), whenyj ¼ 1

Fðyj; XjÞ ¼
inf if dðXj; ljÞ ¼ 0

gjjXjj if dðXj; ljÞ ¼ 1

(

� gjjXjj 1� RðXj; ljÞ
1� rðljÞ :

(17)

When yj ¼ 0

Fðyj; XjÞ ¼ inf if dðXj; ljÞ ¼ 1
0 if dðXj; ljÞ ¼ 0

�
� gjjXjjRðXj; ljÞ

rðljÞ : (18)

Hence, Fðyj; XjÞ becomes

Fðyj; XjÞ � gjjXjj yj
1� RðXj; ljÞ
1� rðljÞ þ ð1� yjÞRðXj; ljÞ

rðljÞ
� �

:

(19)

The effect of the approximation in Eqs. (18) and (17) are
shown in Fig. 4. Instead of imposing an inÞnite cost when
dðX; lÞ 6¼ y, our approximation imposes a cost which is line-
arly proportional to the consistency percentage RðX; lÞ.
When y ¼ 1, the ratio between the consistency percentage
and the consistency threshold RðX; lÞ=rðlÞ are encouraged
to be large, which means that the more elements in X are
labeled as l, the better (Fig. 4-Left). In contrast, when y ¼ 0,
the ratio between the consistency percentage and the consis-
tency threshold RðX; lÞ=rðlÞ is encouraged to be small,
which means that the less elements in X are labeled asl, the
better (Fig. 4-Right). Next, we introduce the a-expansion
and how to negate the indicator variables Y dynamically in
the expansion algorithm so that the projected function is
guaranteed to be submodular.

4.2.2 a-Expansion Move and Dynamical Negation
Algorithm

We deÞne the transformation function Taðxi; tiÞ for the
a-expansion move which transforms the label of a random
variable xi as:

Taðxi; tiÞ ¼ a; if ti ¼ 0
xi; if ti ¼ 1:

�
(20)

The corresponding a-expansion move energy for the
term in Eq. (19) can be written as: Fðyj; TjÞ ¼

gjjXjjf yj
1�rðljÞ 1� RðXj; ljÞ þ

P
i2VjðljÞ

ð1�tiÞ
jXjj

� �
þ 1�yj

rðljÞ
P

i2VjðljÞ
ðtiÞ
jXjjg; if a 6¼ lj

gjjXjjf1�yj
rðljÞ RðX; ljÞ þ

P
i2VjnVjðljÞ

ð1�tiÞ
jXjj

� �
þ yj

1�rðljÞ
P

i2VjnVjðljÞ
ðtiÞ
jXjjg; if a ¼ lj;

8>>>>>><
>>>>>>:

(21)

where Tj ¼ fti; i 2 Vjg is a set of transformed binary variables,

VjðljÞ ¼ fi;xi ¼ ljg \ fi 2 Vjg is the set of image elements

in Vj with label lj, Vj n VjðljÞ is the remaining set of elements

in Vj with labels other than lj (i.e.,fi;xi 6¼ ljg \ fi 2 Vjg).

Most importantly, we observed that when a 6¼ lj the function

is submodular in ðyj; tiÞ, but when a ¼ lj it is submodular in

ðyj; tiÞ, where yj ¼ 1� yj is the negation of yj. This motivates

us to dynamically negate a subset of the indicator variables

according to the category labels fljg.

4.2.3 Probing ’pðyj; ykÞ
The graph construction of the pair-wise instance indicators in
Eq. (10) is equivalent to the construction of binary variables
which is described in [30]. However, there is one issue that we
need to resolve in order to ensure submodularity of the pair-
wise binary function. First of all, since it is essential to capture
both attractive (i.e., both indicators having the same labels)
and repulsive (i.e., both indicators having different labels)
relationships, some pair-wise functions ’pðyj; ykÞ will be sub-
modular and others will be non-submodular in ðyj; ykÞ. There-
fore, we need to Þx the negating pattern of the indicator
variables. However, this contradicts with the dynamic negat-
ing approach described in the previous section.

Fortunately, a simple approach ÒprobingÓ the indicator
variables similar to the one described in [31] can effectively
handle the non-submodular function, since each indicator
only interacts with a small number of nearby indicators. The
probing approach randomly Þxes a small set of indicator
variables fyj; j 2 Qfixg, where the contradiction between the
Þx negating pattern and dynamic negating algorithm takes
place. As a result, the pair-wise function is ensured to be
submodular. Notice that our inference algorithm does not
rely on sophisticated techniques such as QPBO [31] which
requires more memory and computation time.

4.3 Overall Projected Energy Function

At each iteration of the a-expansion, the terms of the origi-
nal model energy (Eq. (5)) becomes a pairwise and submod-
ular function of T , Y , and Y . The overall projected energy
function (except the function in Eq. (13)) becomes,

EðT; Y; Y Þ ¼
X
c2CX

ccðTcÞ þ
X
j2Qa

Fðyj; T Þ þ
X
j2Qa

Fðyj; T Þ

þ
X

ðj2Qa;k2QaÞ[ðj;kÞ2Ud

’pðyj; ykÞ

þ
X

ðj2Qa;k2QaÞ[ðj;kÞ2Ud

’pðyj; ykÞ

þ
X

ðj2Qa;k2QaÞ[ðj;kÞ2Ud

’pðyj; ykÞ;

(22)

Fig. 4. Comparison between the original function Fðy; XjÞ (blue lines)
and the approximated function (red lines) in Eqs. (18) and (17). The left
panel shows the case when y ¼ 1. The right panel shows the case when
y ¼ 0. Notice that the dash blue lines indicate the sharp transition from
�nite values to in�nite values.
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average improvement over the basic CRF model. Typical
results are shown in Fig. 9-Top. Using our efÞcient inference
algorithm, inference takes in average 1.33 seconds for each
image which has 200 to 300 super-pixels on a Intel(R) Xeon
(R) CPU @ 2.40 GHz. We highlight that our model can gener-
ate object instance-based segmentations due to the ability to
reason in the augmented labeling spaceQ (Fig. 5a).

Another advantage of using our model is to improve
detection accuracy. We measure detection performance in
terms of Recall versus false positive per image (FPPI) in
Fig. 5b, where detection results from Þve-fold validations are
accumulated and shown in one curve. The performance of
the proposed model is compared with the pre-trained LSVM
[1]. Our model achieves consistent higher recall than the
LSVM baseline at small number of FPPI as shown in Fig. 5b.

Since our method utilizes pre-trained object detectors to
obtain a set of plausible object hypotheses, we evaluate the
segmentation accuracy given worse detectors to see how
our method depends on the quality of the detectors. We
simulate a worse detector by reducing the number of
recalled objects in the set of plausible detections. As shown
in Table 2b, the average accuracy decreases only gradually
when the maximum recall decreases. Notice that, even
when the recall is only 20 percent, our ACRF model still
achieves accuracy better than the basic CRF.

6.2 PASCAL Dataset

This dataset contains 14; 743 images with 21 categories
including 20 thing categories and 1 stuff category. Only a
subset of images have segmentation labels, and we used

the standard split for training ( 749 images), validation
(750 images), and testing (750 images). A system analysis of
our model (Table 3) shows that the performances of most
classes were improved when additional components are
added on top of the basic CRF model. However, our ACRF
model is able to signiÞcantly boost up the performance and
achieves competitive accuracy compared to other teams in
the challenge (ranked in 4th in Table 4). Typical results are
shown in Fig. 9-Bottom.

6.3 Relationship Analysis

We found that the pair-wise geometric relationships con-
tribute to the accuracy improvement of our ACRF model
more than the co-occurrence relationships, since CRFþ Det
þ co-occurrence relationships (Last row in Table 5) do not
consistently improve the accuracy of all categories com-
pared to CRF þ Det (middle row in Table 1). Moreover, all

Fig. 5. (a) Typical thing segmentation results on the Stanford dataset. Notice that our model can obtain instance-based segmentations (last column)
due to the ability to reason in the augmented labeling space Q. (b) Recall versus FPPI curves of our ACRF and LSVM on the Stanford dataset. Our
ACRF achieves better recall at different FPPI values.

TABLE 3
The Segmentation Accuracy of Different Variants of Our Model (i.e., CRF, CRF+ Detection,

and Full ACRF Models) on PASCAL Dataset

TABLE 4
Average Segmentation Accuracy of Our ACRF Model Compared to Other State-of-the-Art Methods on PASCAL Dataset

TABLE 5
Segmentation Accuracy on the Stanford Dataset When the

Pair-Wise Geometric Relationships Are Partially (e.g., Car and
Person, or Car and Bus Geometric Relationships Removed) or

Totally (i.e., All Geometric Relationships) Removed
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