Watch-Bot: Unsupervised Learning for
Reminding Humans of Forgotten Actions

Chenxia W4, Jiemi Zhang, Bart Selmap, Silvio Savareseand Ashutosh Saxeha

Abstract—We present a robotic system that watches a human
using a Kinect v2 RGB-D sensor, detects what he forgot to
do while performing an activity, and if necessary reminds the
person using a laser pointer to point out the related object.
Our simple setup can be easily deployed on any assistive robot.

Our approach is based on a learning algorithm trained in a
purely unsupervised setting, which does not require any human
annotations. This makes our approach scalable and applicable Bot Reminds
to variant scenarios. Our model learns the action/object co- |
occurrence and action temporal relations in the activity, and ‘
uses the learned rich relationships to infer the forgotten action
and the related object. We show that our approach not only
improves the unsupervised action segmentation and action
cluster assignment performance, but also effectively detects the
forgotten actions on a challenging human activity RGB-D video
dataset. In robotic experiments, we show that our robot is able
to remind people of forgotten actions successfully.

fetch-milk-from-fridge

I. INTRODUCTION

The average adult forgets three key facts, chores or events
every day [1]. Hence it is important for a personal robot to beig. 1: Our Watch-Bot watches what a human is currently doing,
able to detect not only what a human is currently doing bugnd uses our unsupervised learning model to detect the human's
also what he forgot to do. For example in Fig. 1, someon{é’r?‘?éte”_ ag[tr:ons. Oncle a _ftorgqttten a‘it't?]“ deltefrgﬂ'g.‘”;?@k'
fetches milk from the fridge, pours the milk to the cup, takeﬁ(i' ridge in the example), it points out the related objeatilk in
the cup and leaves without putting back the milk, then the
milk would go bad. In this paper, we focus on detectinghese approaches especially in a completely unsupervised
these forgotten actions in the complex human activities fagetting.

a robot, which learns from a completely unlabeled set of Our goal is to enable a robot, that we call Watch-Bot,
RGB-D videos. to detect humans' forgotten actions as well as localize the

There are a large number of works on vision-based huelated object in the current scene. The robot consists of a
man activity recognition for robots. These works infer theKinect v2 sensor, a panftilt camera (which we call camera
semantic label of the overall activity or localize actions in théor brevity in this paper) mounted with a laser pointer, and a
complex activity for better human-robot interactions [2], [3],/aptop (see Fig. 2(a)). This setup can be easily deployed on
[4], assistive robotics [5], [6]. Given the input RGB/RGB-any assistive robot. Taking the example in Fig. 1, if our robot
D videos [7], [8], [9], or 3D human joint motions [10], sees a person fetch a milk from the fridge, pour the milk, and
[11], or from other inertial/location sensors [12], [13], theyleave without putting the milk back to the fridge, it would
train the perception model using fully or weekly labeledrst detect the forgotten action and the related object (the
actions [8], [14], [15], or locations of annotated human/theimilk), given the input RGB-D frames and human skeletons
interactive objects [16], [17]. Recently, there are some othdéfom the Kinect; then map the object from the Kinect's view
works on anticipating human activities for reactive robotido the camera’'s view; nally panftilt the camera until its
response [18], [5]. However, to enable a robot to reminghounted laser pointer pointing to the milk.
people of forgotten things, it is challenging to directly use In real robotic applications, people perform a very wide

variety of actions. These are hard to learn from existing
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Fig. 2: (a). Our Watch-Bot system. It consists of a Kinect v2 sensor that inputs RGB-D frames of human actions, a laptop that infers the
forgotten action and the related object, a pan/tilt camera that localizes the object, mounted with a xed laser pointer that points out the
object. (b). The system pipeline. The robot rst uses the learned model to infer the forgotten action and the related object based on the
Kinect's input. Then it maps the view from the Kinect to the pan/tilt camera so that the bounding box of the object is mapped in the
camera's view. Finally, the camera pan/tilt until the laser spot lies in the bounding box of the target object.

so that we can understand which actions have been taketh, [4] introduced a human-like stylized gestures for better
e.g, the example activity contains four actiorfetch-milk- human-robot interaction. Piyathilaket al [11] used 3D
from-fridge pour, put-milk-back-to-fridge and leave! For skeleton features and trained dynamic bayesian networks for
detecting the forgotten action and reminding, we model théomestic service robots. However, it is challenging to directly
co-occurrence between actions and the interactive objectse these approaches for inferring the forgotten actions.
as well as the temporal relations between these segmentedRecently, there are works on anticipating human activities
actions, e.g, action fetch-milk-from-fridgeoften co-occurs and they performed well for assistant robots [18], [5]. They
with and is temporally after actioput-milk-back-to-fridge modeled the object affordances and object/human trajectories
and objectmilk occurs in both actions. Using the learnedo discriminate different actions in past activities and antic-
actions and relations, we infer the forgotten actions and ldpate future actions. However, in order to detect forgotten
calize the related objects,g, put-milk-back-to-fridgemight  actions, we also need to consider actions after it such as
be forgotten as previously seétch-milk-from-fridgebefore  boiling waterindicates lling kettle before it.
pouring, and seerleaving indicates he really forgot to do, The output laser spot on object is also related to the
alsomilk is the object interacted in the forgotten action. work “a clickable world' [26], which selects the appropriate
We evaluate our approach extensively on a large RGB-Behavior to execute for an assistive object-fetching robot
human activity dataset recorded by Kinect v2 [19]. Thaising the 3D location of the click by the laser pointer.
dataset containgl58 videos of human daily activities as Differently, we keep the laser pointer xed on top of the
compositions of multiple actions interacted with different obcamera, and panf/tilt the camera iteratively to point out the
jects, in which people forgot actions #22videos. We show target object using a real-time view matching.
that our approach not only improves the action segmentationMost of these works rely on supervised learning given
and action cluster assignment performance, but also obtaifugly labeled actions, or weakly supervised action labels,
promising results of forgotten action detection. Moreoverpr locations of human/their interactive objects. Differently,
we show that our Watch-Bot is able to remind humans ofur robot uses a completely unsupervised learning setting
forgotten actions in the real-world robotic experiments.  that trains model only on Kinect's output RGB-D videos.
Our model is based on our previous work [19], which
presents a Casual Topic Model to model action relations in
Most previous works focus on recognizing human actionge complex activity. In this paper, we further introduce the
for both robotics [2], [8], [9] and computer vision [20], [21], hyman interactive object and its relations to actions, so that
[22]. They model different types of information, such as thene ropot can localize the related object. We then design a

temporal relations between actions [23], [24], the human angdpotic system using the model to kindly remind people.
the interactive object appearances and relations [25], [24].

Yang et al. [6] presented a system that learns manipulation I1l. WATCH-BOT SYSTEM
action plans for robot from unconstrained youtube videos.
Hu et al. [15] proposed an activity recognition system traine
from soft labeled data for the assistant robot. Chrungbo

Il. RELATED WORK

We outline our Watch-Bot system in this section (see
ci:ig. 2). Our goal is to detect what people forgot to do
given the observation of his poses and interacted objects.
1In the training, we do not know these action semantic labels. Instead V\;Ehe robot (?OHSIStS of a _KmECt V2 sensor, a paq/tllt camera
assign the action cluster index. mounted with a laser pointer, and a laptop. The input to our



Human-words w ject- tures from the output by the Kinect v2. The new Kinect v2

- 5 | has high resolution of RGB-D frames (RGB920 108Q
—m depth:512 424 and improved body tracking d25 body

joints of human skeletons.
We rst extract the human-skeleton-trajectory features of
K Action-topicy ject-topics the clip as in [19]. Then we extract the human interactive-
G object-trajectory based on the human hands, image segmenta-
T 0000 tion, motion detection and tracking. We collect the bounding
boxes enclosing the potential interested objects from super-

, pixels output by a fast edge detection approach [28] on both
fadeolClips RGB and depth images. We apply the moving foreground

*f\(%% — - mask [29] to remove the unnecessary steady backgrounds
Lo : and select those segments within a distance to the human
Mapped Human-words Mapped Object-words .. . . .
— NN e e P hand joints in both 3D points and 2D pixels.
i * ; We then track the bounding box in the clip using SIFT
Assigned Action-topics Assigned Object-topics matching and RANSAC to get the trajectories. We use the
e le o la

closest trajectory to the human hands for the clip. Finally,
Fig. 3: Video representation in our approach. A video is rst decomwe extract six kernel descriptors from the bounding box of
posed into a sequence of overlapping xed-length temporal clipssach frame in the trajectory: gradient, color, local binary pat-

The human-skeleton-trajectories/interactive-object-trajectories fropn depth gradient, spin, surface normals, and KPCA/self-
all the clips are clustered to form the human-dictionary/object-. . ’ ’ '

dictionary. Then the video is represented as a sequence of hum§r'1m”arity’ which have been proven to be_ useful features for
word and object-word indices by mapping its human-skeletonrRGB-D data [30]. We concatenate the object features of each

trajectories/interactive-object-trajectories to the nearest humaframe as the interactive-object-trajectory feature of the clip.
words/object-words in the dictionary. Also, an activity video is

about a set of action-topics/object-topics indicating which actions

are present and which object types are interacted. IV. LEARNING MODEL

We present a new unsupervised model for our Watch-Bot.

system is RGB-D human activity videos with the trackedrne graphic model is illustrated in Fig. 4 and the notations
3D joints of human skeletons from Kinect v2. Then we Us@re in Table I. Our model is able to infer the probability of

an unsupervised trained learning model (see Section 1V) fgrgotten actions using the rich relationships between actions
infer the forgotten action and localize the related object igg objects.
the Kinect's view. After that, we map the object bounding \ye |earn the model from a training set @ unla-

box from the Kinect's view to the camera’s view. Finally, Weyq1eq videos. Each video as a documdntonsists ofNg
pan/tilt the camera until the laser spot lies within the target niinuous clipsf cng gNdl each of which consists of a
n=1"~-

object in its view (see Section V). human-wordw"; mapped to the human-dictionary and an

Video Representation. To detect the action structure object-wordw?, mapped to the object-dictionary. We assign
in the complex activity video, we propose a video repaction-topic to each clig,y from K latent action-topics,
resentation that draws parallels to document modeling ifdicating which action-topic they belong to. We assign
the natural language [27] (illustrated in Fig. 3). We rstopject-topic to each object-wond®, from P latent object-
decompose a video into a sequence of overlapping Xedopics, indicating which object-topic is interacted within the
Iength temporal ClipS. We then extract the hUman-SkeletOl&ﬁp_ The assignments are denotedzég and Zr(ii) . We use
trajectory features and the interactive-object-trajectory fe%uperscript$1); (2) to denote action-topics and object-topics
tures from the clips. In order to build a compact represenespectively. After assignments, in a video, continuous clips
tation of the activity video, we represent it as a sequencgith the same action-topic compose an action segment. All
of words. We usek-means to cluster the human-skeletonthe segments assigned with the same action-topic from the
trajectories/interactive-object-trajectories from all the clips t¥aining set compose an action cluster.
form a human-dictionaryand anobject-dictionary where As shown in Fig. 4, the generative process of our
we use the cluste_r centers @iman-wordsand object- . 54el is as follows. In a document we choosezgﬁ)
s Then, I e o b epreseted o & SeQUelfr( 912l Mot ( ), wherebt ()15 a muts

- - . . . . . h

human-skeleton-trajectories/interactive-object-trajectories gocr;::‘\ngI?rtgraugzna\::vtlitgn?t%r;?igeeré;i-rch?nUllimc?;i\gloé?s\,lprcijbu-
the nearest human-words/object-words in the dictionar}/i.On @ b Mult ( o) ), where (@) Dir ( @) is
Also, an activity video is about a set afction-topicsin- 2@+ Tdn RS Tk
dicating which actions are present in the video, and a set #f¢ human-word distribution of action-topic sampled from
object-topicsindicating which object types are interacted. @ Dirichlet prior with the hyperparameter®™ . While the

Visual Features. We extract both human-skeleton- O2/€Ct-WOrdWy, is drawn from an actlorzl';())pm and object

trajectory features and the interactive-object-trajectory fedQPIC SPeci ¢ multinomial distribution )’ ¢, , Wgy

nd “nd



VI N TABLE |: Notations in our model.

w) (X) Symbols  Meaning
/27}-%\ D number of videos in the training database;
b @)\ /@) K number of action-topics;
\v ) )
d

\V; ) P number of object-topics;
\}/ \v/ Ng number of human-words/object-words in a video;
(@) ‘CT @) Cnd n-th clip in d-th video;
\Ta ) a ) why n-th human-word ind-th video;
1<mn<N, T wSy n-th object-word ind-th video;
02 1) ; ; ; .
—~ z action-topic assignment af,q ;
GOy @) (@) ) HoN-IOpIC 85819 d:
\Zma) \Zpnd \\nd/ zZ.q object-topic assignment afip; ;
' . thd normalized timestamp of afyq ;
l tmnd = tmd tng the relative time betweegnq andcyg ;
@m. @ ; ; ; e .
the probabilities of action/object-topics @th document;
mnd‘ nd‘ ‘Wnd‘ % d) p (1) @ ) p
the priors of | 4 in d-th document;
multinomial human -word distribution from action-toplc
1<ki<K kl ) (klpz) mu!tinomiel object-werd dist!'ibution from
action-topick and object-topi@;
(1)__> (1) (12)“_ p2) ; multivariate normal distribution 0¥.q4 = [v(l) (2) I
k \\j/ \\J/ Kl relative time distribution ofng between act|on -topik; | ;

Fig. 4: The prObab"lSth graphic model of our approach.  pution of our model. The woradv,;wS, and the relative
Mult ( (1(12)) (2)) where 2 Dir ( 1) is the object- time tmna are observed in each video. We can integrate

P out P 92 gince Dir ( @):Dir ( @) are conjugate
word distibtion of action- -topik and object-topig. Here k ' kp Jug

we consider the same object type llBeokcan be variant in priors for the multinomial distributions o (f) We also
appearance in different actions such adase bookin fetch- ~ estimate the standard distributions |nclud|ng the mutivariate
bookand aopen bookin reading So we consider the object- normal distributiorN (; ) and the time distribution( )
word distribution for different combinations of the actionusing the method of moments, once per iteration of Gibbs
topic and the object topic. sampling. The topic pnory(l) .(g) can be sampled by a
The co-occurrence such as actiput-down-itemsand Metropolis-Hastings independence sampler [33] as in [19].
action take-items objectbook and actionreading is useful Following the convention, we use the xed symmetric
to recognizing the co-occurring actions/objects and gives Ririchlet distributions by setting () ; (2 as0:01
strong evidence for detecting forgotten actions. We model Then we introduce how we sample the topic assignment
the co-occurrence by drawing their priors from a mlxturez,(]d), ,(m We do a collapsed sampling as in Latent Dirichlet
distribution. In the graphic model, %) ,()2) decide the Allocation (LDA) [27] by calculating the posterior distribu-
probability of action- top#:k and object F_Qplcp ogcurnng tion of zr(]d),
in a documentd, where ., kq =1 o @ =1 p(z = kj B 20 2@t )
We construct the probabilities using a stick-breaking process / (1)| (k;w,'}d)l (k: Z,(fj) ‘W nd)p(tndjz(é) )

as in [19], Wherevl((t) ,véd) serve as the priors. Then we

draw the packed vectory = [v(l) .(2)] from a multivariate p(z(z) = (j)' (Zr)w; r%)) / (Z)I (2(1) PiWha);
normal distributionN (; ) , which captures the correlations R NkW”hd + @ _
between action-topics and object-topics. P (kiwng) = N M4 N, @
The temporal relations between actions are also useful “ N._nd iv (12)
to discriminating the actions using temporal ordering and | (k; p;woy) = kpd °
inferring the temporal consistent forgotten actions. So we Nyp ' + No "
model the relative time of occurring actions as in [19]. In W
detail, lettng ; tma 2 (0; 1) be the absolute time stampmifth P(toaiz®; )= (tmna ] 0 3) (tma ] 0 )i (1)

clip andm-th clip, which is normalized by the video length.

tmnd = tma  tna iS the relative time ofm-th clip relative where Ny;No is the number of unique word types in
to n-th clip. Thentmng is drawn from a certain distribution, dictionary, N kwnhd _Nkpcvdo denotes the number of instances
tmnd ( ,o. m) where o . 20 are the parameters. of word wf,=w2, assigned with action-topik/action-topic

Zmg +Z

( 1) areK? pairwise action-topic speci ¢ relative time kK and objectntdoplcp,ndexcludlngn -th word in d-th docu-
distributions de ned by a product of a Bernoulli distribution Ment, andN, ™ =N, denotes the number of total words

which gives the probability of actiok after/before the action as&g)ned (‘g'th action-topik/action-topick and object-topic
|, and a normal distribution which estimates how long th®- Z ng —(Z nd(z)denOteS the topic assignments for all words

actionk is after/before the actioh exceptznd =z -
] In Eg. (1), note that the topic assignments are de-
A. Learning and Inference cided by which actions/objects are more likely to co-

We use Gibbs sampling [31], [32] to learn the parametersccur in the video (the occurrence probabllltle%) = (2)
and the infer the hidden variables from the posterior distrithe visual appearance of the word (the word dlstrlbutlons



Algorithm 1 Forgotten Action and Object Detection. Input RGB-D Video Segments assigned with Action Topics

» e P el

reading leave-office

Input: RGB-D videoq with tracked human skeletons.

Output: Claim no action forgotten, or output an action segment

with the forgotten action and a bounding box of the related object

in the current scene.

1. Assign the action-topics to clips and the object-topics to object-

words inq as introduced in Section IV-A.

2. Get the action segments by merging the continuous clips with

the same assigned action-topic.

3. If the assigned action-topidé in g contains all modeled put-down-items put-back-book

action-topics[1 : K ], claim no action forgotten and return;

4. For each action segmentation poirt each not assigned

action-topickm 2 [1:K] Ke, and each object-topipm 2 Fig, 5: lllustration of forgotten action and object detection using

[1:P] . . our model. Given a query video, we infer the forgotten action-topic
Compute the probability de ned in Eq. 2; and object-topic in each segmentation potat {2). Then we select

5. Select the top tree possible tupl€&m;pm;ts), and get the top segment from the inferred action-topic's segment cluster

the forgotten action segment candidate Qetwhich contains \yith the inferred object-topic with the maximuforget _score.

segments with topicékm ; pm); o ] ) )

6. Select the top forgotten action segmenfrom Q with the forgotten object in the Kinect's view of the query video (step

maximumforget _score(p); _ ~8,9,10in Alg. 1). After that, we map the bounding box of the

f7- If ft(zrget ,Zcor?(p) is smaller than a threshold, claim no actiongpject from the Kinect's view to the camera’s view. Finally,

orgotten and return; : I : .

8. Segment the current frame to super-pixels using edge detdl® pan_/t|lt camera until its laser pointer points out the related

tion [28] as in Section III; object in the current scene.

9. Select the nearest super-pixels to both extracted object bound-Forgotten Action and Object Inference. We rst intro-

ing box inq andp. uce how we infer the forgotten action-topic and object-topic

d
10. Merge the adjacent super-pixels and bound the largest one. P P
with a rectangle as the output bounding box. Ugmg the dependencies in our learned model. After assigning

11. Return the top forgotten action segment and the objefi€ action-topics and object-topics to the query videove
bounding box. consider adding one additional clhconsisting ofuh; o
into g in every action segmentation point(see Fig 5). Then
S N W ) ="the probabilities of the missing action-topics with object-
ative time distributiong(tngjz.y ; )). The time complexity tgpics p,, in each segmentation poi¢ can be computed
of the sampling per iteration I®(Nq4D (max(NgK;P)). following the posterior distribution in Eq. (1):

For inference of a test video, we sample the unknown topic

ti
Action Segment Clusters with Related Objects

phone phone book  book-stack book

! (k;wﬂd);! (k; p; w3,)) and the temporal relations (the rel-

assignmentzﬁ,) ;zr%) and the topic priorsv%);v:(g) using the p(zél) = km;Zéz) = Pm;te = tsjother)

learn rameters in the training stage. n @ ). ) s o wO)-

earned parameters in the training stage Io0 Paptsizd s ) (km W™ (K P WO);
wh;wo

V. FORGOTTENACTION DETECTION AND REMINDING
) ) ] ) sitt ts2Ts; km 2 [1:K] Keg; (2)
In this section, we describe how we apply our model in our

robot to detecting the forgotten actions and reminding peopl¥/€ré Ts is the set of segmentation points (suchtas,
It is more challenging than conventional action recognitionn Fig- 5) andKe is the set of existing action-topics in the

since what to infer is not shown in the query video. There!ideo fetch-booketc in Fig. 5). Thus[1:K] K. are the

fore, unlike the existing models on action relations learnind}"'>*'d topics in the videcplit-down-itemsetc. in Fig. 5).
our model learns rich relations rather than the only loca(tsizig : )i! (Km;W");! (km;pm;W°) can be computed as
temporal transitions. As a result, those actions occurred witA Ed. (1). Here we marginalized"; W to avoid the effect
a relatively large time interval, occurred after the forgotte®f & speci ¢ human-word or object-word.
actions, as well as the interactive objects can also be usedNote that, in Eq. (2), the closer topics would have
to detect forgotten action.g, a put-back-bookmight be higher probabilities fé); ,()f,) to co-occur in this query
forgotten as previously seerfetch-bookaction before along video as they are drawn from the learned joint distri-
reading and seen dook and aleaving action indicates he bution. The action-topics which are more consistent with
really forgot it. the learned temporal relations would have higher probabil-
Our goal is to detect the forgotten action and then point oL}Q/ p(tsjz:(j); ). The marginalized word-topic distribution
the related object in the forgotten action using our learned ,n .0 ! (Km ;WM (Km ; pm; W°) give the likelihood of the
model (see Alg. 1). We rst use our model to segment théopic learned from training data.
guery video into action segments (step 1,2 in Alg. 1), and Forgotten Action and Object Detection. We then in-
then infer the most possible forgotten action-topic and thegoduce how we retrieve a top action segment from the
related object-topic (step 4 in Alg. 1). Next we retrievetraining database. We rst select the top three tuples
a top forgotten action segment from the training databasénm ; pm;ts) using the above probability. These action seg-
containing the inferred forgotten action-topic and the objectments consist a forgotten action candidate segmenQset
topic (step 5,6 in Alg. 1). Using the extracted object in thaVe then retrieve the segment fro®@ with the maxi-
retrieved segment, we detect the bounding box of the relatesum forget _score(p) = ave(D(f pm;fqgr ); D(fpm ;T qt))



max(D(f o ;Tqt); D(fpr; Tgr ), where D(;) is the average asturn-on-monitorandturn-off-monitorwhile some occur in
pairwise distances between framesg(;); max(;) are the random order. Also, in the dataset, people forgot actions in
average and max value. The front and the tail of the forgotte222 videos. There ar8 types of forgotten actions in 'of ce'
action segment s ;f need to be similar to the tail of the and5 types in 'kitchen'.

adjacent segment ig beforets and the front of the adjacent
segment ing after ts: fq;for . The middle of the forgotten
action segment,, need to be different thq; fqr, as it is We compare four unsupervised approaches. They are Hid-
a different action forgotten in the vidéolf the maximum den Markov Model (HMM) [34], LDA topic model [27],
score is below a threshold or there is no missing topiosur previous work Causal Topic Model(CaTM) [19] and our
(i.e;;Ke = [1 : K]) in the query video, we claim there Watch-Bot Topic Model (WBTM). We use the same human
is no forgotten actions. skeleton and RGB-D features introduced in Section Ill. In

Then we detect the bounding box of the related forgottebhDA, actions and objects are modeled independently as
object in the current scene. We segment the current frantlge priors of action/object assignments are sampled from
into super-pixels as in Section Ill, then search the neareat x Dirichlet prior and there is no relative time between
super-pixels using the extracted object in the top retrieveatctions modeled. For HMM, similarly we set action states
action, nally merge the adjacent super-pixels and bound thehich generates both human and object trajectory features of
largest one with a bounding box. each clip, and object states which generates object trajectory

Real Object Pointing. We describe how we pan/tilt the features. Since there is no object modeled in CaTM, we only
camera to point out the real object. We rst compute thevaluate its activity related performance.
transformation homography matrix between the frame of the In the experiments, we set the number of action-
Kinect and the frame of the pan/tilt camera using keypoint®pics/object-topics and states for HMM equal to or more
matching and RANSAC, which can be done very fast withithan ground-truth action/object classes. For LDA, CaTM and
0:1 second. Then we can transform the detected boundirmyr WBTM, the clip length is set t®0 frames, densely
box from the Kinect's view to the pan/tilt camera's view.sampled by step one and the size of human/object dictionary
Since we x the position of the laser spot in the panttiltis set to500. The forgotten action candidate set for different
camera view, next we only need to pan/tilt the camera tithpproaches consists of the segments with the inferred missing
the laser spot lies within the bounding box of the targetopics by transition probabilities for HMM, the topic priors
object. To avoid the coordinating error caused by distortiofor LDA. After inference, we use the same forgotten action
and inconsistency of the camera movement, we use amd object detection method as introduced in Section V.
iterative search plus small step movement instead of one ) )
step movement to localize the object (illustrated in Fig. 2)°- Evaluation Metrics
In each iteration, the camera pan/tilt a small step towards to We test in two environments “of ce' and “kitchen'. In each
the target object according to the relative position betweesnvironment, the dataset is split into a train set with mostly
the laser spot and the bounding box. Then the homographyll videos (of ce: 87, kitchen 119 and a few forgotten
matrix is recomputed in the new camera view, so that theéideos (of ce: 10, kitchen10), and a test set with a few full
bounding box is mapped in the new view. Until the lasewideos (of ce: 10, kitchen20) and mostly forgotten videos
spot is close enough to the center of the bounding box, tief ce: 89, kitchen113). We train the models in the train set
camera stops moving. and evaluate the following metrics in the test set.

Action Segmentation and Cluster AssignmentAs in
evaluation for unsupervised clustering, we map the action
A. Dataset cluster in the train set to the ground-truth action labels

We evaluate our Watch-Bot in a challenging human activby counting the mapped frames between action-topics and
ity RGB-D dataset [19] consisting db8videos of abouR30  ground-truth action classes as in [19] . Then we can use the
minutes in total recorded by the Kinect v2 sensor. Each vida@apped action class label for evaluation.
in the dataset contain7 actions interacted with different  \We measure the performance in two ways. Per frame:
objects (see examples in Fig. 6). We askédubjects t0 e computeframe-wise accuracy (Frame-Acdhe ratio of
perform human daily activities ii8 of ces and 5 kitchens  correctly labeled frames. Segmentation: we consider a true
with complex backgrounds and recorded the activities ifositive if the union/intersection of the detected and the
different views. It is composed of fully annotat@d types of ground-truth segments is greater tha@% as in [23]. We
actions (0in the of ce, 11in the kitchen) interacted witB3  computesegmentation accuracy (Seg-Acthe ratio of the
types of objects. The participants nish tasks with differenground-truth segments that are correctly detected setd
combinations of actions and ordering. Some actions ocCyfentation average precision (Seg-AB) sorting all action
together often such ali-kettle andboil-water, while some segments using the average probability of their words' topic
are not always together. Some actions are in a X order su@ksignments. All above three metrics are computed by taking

2Here the middle, front, tail frames a2®%-length of segment centering the average of .eaCh act|or! class, -
on the middle fram’e, ste{rting from the rst frame, and ending at the last Forgotten Action and Object Detection.We measure the
frame in the segment respectively. forgotten action detection accuracy (FA-Adwy the portion

B. Baselines

VI. EXPERIMENTS



(a) turn-off-monitor (b) take-item

f ‘l”_ ‘Y = ‘
(c) fetch-from-fridge 0']|0 12 14 16 18 10 12 14 16 18

Fig. 6: Action examples in the dataset. The left is RGB frame an.. . Action Topics . Action Topics
the right is depth frame with human skeleton (yellow). Fig. 7: Action segmentation Acc/AP varied with the number of

action-topics in “of ce' dataset.

TABLE II: Action segmentation and cluster assignment results, ar-'

forgotten action/object detection results. 05 W 0.4W
7 SHMM |

‘ofce’'(%) [ Seg-Acc Seg-AP  Frame-Acc  FA-Acc  FO-Acc 0.4 0.3 oLpa

HMM 19.4 231 273 322 204 Q \/‘\‘N Q  eWBTM

LDA 12.2 19.6 18.4 15.7 105 <03 | Sor—
CaTM 32.9 34.6 385 415 . < S o
WBTM 35.2 36.0 412 46.2 364  Lo2 ocatm| 1 - -

“kitchen'(%) | Seg-Acc__ Seg-AP__ Frame-AcC__ FA-Acc  FO-Acc [w/ 01

AMIM 172 18.8 20.3 24 53 01

LDA 6.7 17.1 14.4 10.8 5.3 10 12 14 16 118 J0 12 14 16 18
CaTM 29.0 255 34.0 20.5 - ] Action Topics . Action Topics )
WBTM 30.7 28.5 36.9 24.4 20.6 Fig. 8: Forgotten action/object detection accuracy varied with the

number of action-topics in “of ce' dataset.

of correct detected forgotten action or correctly claiming no

forgotten actions. We consider the output forgotten actiofodels action and object independently as well as CaTM
segments by the compared approaches containing5®gr Which only models the actions.

ground-truth forgotten actions as correct. We measure theHow successful was our unsupervised approach in
forgotten object detection accuracy (FO-Adm) the typical learning meaningful action-topics? From Table Il and
object detection metric, that considers a true positive if thEig 7, we can see that the unsupervised learned action-
overlap rate (union/intersection) between the detected afPiCs can be semantic meaningful even though ground-truth

the ground_truth Object bounding box is greater td&8o. semantic labels are not prOVided in the training. It can also
be seen that, the better action segmentation and cluster as-

D. Results signment performance often indicates better forgotten action
. ] ] detection performance, since actions in the complex activity
Table Il, Fig. 7 and Fig. 8 show the main results ofshoyid be rst well segmented and discriminated for next
our experiments. We discuss our results in the light of th@tage forgotten action/object detection.
following questions. How did the performance change with the number of
How well did forgotten action/object detection per-  action-topics? We plot the performance curves varied with
form? In Table Il, we can see that our model achieveghe action-topic number in Fig. 7 and Fig. 8. It shows that the
a promising results for complex activities with multiple performance does not change much with the action-topics.
objects in variant environments in the completely unsupefrhs is because a certain action might be divided into several
vised setting. Our models CaTM and WBTM show bettegction-topics but more variations are also introduced.
performance than traditional uncorrelated topic model LDA,
since the co-occurrence and temporal structure are wél Robotic Experiments
learned. They outperform HMM, since we consider both In this section, we show how our Watch-Bot reminds
the short-range and long-range action relations while HMNbeople of the forgotten actions in the real-world scenarios.
only considers the local neighboring states transitions. OWe test each two forgotten scenarios in “of ce' and “kitchen'
WBTM model improves the performance over CaTM orrespectively put-back-bookturn-off-monitor put-milk-back-
action clustering and forgotten action detection, also is abte-fridge andfetch-food-from-microwayeWe use a subset of
to detect the forgotten object, because action and objetie dataset to train the model in each activity type separately.
topics are factorized and their relations are well modeled. In each scenario, we asksubjects to perform the activity
How important is it to consider relations between twice. Therefore, we tes4 trials in total. We evaluate three
actions and objects?From the results, we can see thataspects. One is objective, the success rate (Succ-Rate): the
the model which did well in forgotten action detection alsdaser spot lying within the object as correct. The other two
performed well in detecting forgotten object. Since our modedre subjective, the average Subjective Accuracy Score (Subj-
well considers the relations between the action and th&ccScore): we ask the participant if he thinks the pointed
object, it shows better performance in both forgotten actioabject is correct; and the average Subjective Helpfulness
and forgotten object detection than HMM and LDA whichScore (Subj-HelpScore): we ask the participant if the output



Fig. 9: An example of the robotic experiment. The robot detects the human left the food in the microwave, then points to the microwave.

TABLE lII: Robotic experiment results. The higher the better.

[71
| Succ-Rate(%)  Subj-AccScore(1-5)  Subj-HelpScore(1-5)
HMM 37.5 2.1 2.3 ]
LDA 29.2 1.8 2.0
WBTM 62.5 3.5 3.9 [9]

of the robot is helpful. Both of them are ih 5 scale, the
higher the better. (10]

Table Ill gives the results of our robotic experiments. Wei1;
can see that our robot can achieve 0666 success rate
and gives the best performance. In most cases people thiﬁg
our robot is able to help them understand what is forgotten.
Fig. 9 gives an example of our experiment, in which ouf!3]
robot observed what a human is currently doing, realized
he forgot to fetch food from microwave and then correctly14]
pointed out the microwave in the scene.

VIl. CONCLUSION [15]

In this paper, we enabled a Watch-Robot to automaticalli6]

detect people's forgotten actions. We showed that our robot
easy to setup and our model can be trained with completelllfl7
unlabeled videos without any annotations. We modeled d#l
activity video as a sequence of action segments, which Wey)
can understand as meaningful actions. We modeled the co-
occurrence between actions and the interactive objects 8¢
well as the temporal relations between these segmentgd,
actions. Using the learned relations, we inferred the forgotten

actions and localized the related objects. We showed that daf!
approach improved the unsupervised action segmentation gpg
cluster assignment performance, and was able to detect the
forgotten action on a complex human activity RGB-D vided?*!
dataset. We showed that our robot was able to remind peoys;]
of forgotten actions in the real-world robotic experiments by

pointing out the related object using the laser pointer. 26]
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