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Abstract— We present a robotic system that watches a human
using a Kinect v2 RGB-D sensor, detects what he forgot to
do while performing an activity, and if necessary reminds the
person using a laser pointer to point out the related object.
Our simple setup can be easily deployed on any assistive robot.

Our approach is based on a learning algorithm trained in a
purely unsupervised setting, which does not require any human
annotations. This makes our approach scalable and applicable
to variant scenarios. Our model learns the action/object co-
occurrence and action temporal relations in the activity, and
uses the learned rich relationships to infer the forgotten action
and the related object. We show that our approach not only
improves the unsupervised action segmentation and action
cluster assignment performance, but also effectively detects the
forgotten actions on a challenging human activity RGB-D video
dataset. In robotic experiments, we show that our robot is able
to remind people of forgotten actions successfully.

I. I NTRODUCTION

The average adult forgets three key facts, chores or events
every day [1]. Hence it is important for a personal robot to be
able to detect not only what a human is currently doing but
also what he forgot to do. For example in Fig. 1, someone
fetches milk from the fridge, pours the milk to the cup, takes
the cup and leaves without putting back the milk, then the
milk would go bad. In this paper, we focus on detecting
these forgotten actions in the complex human activities for
a robot, which learns from a completely unlabeled set of
RGB-D videos.

There are a large number of works on vision-based hu-
man activity recognition for robots. These works infer the
semantic label of the overall activity or localize actions in the
complex activity for better human-robot interactions [2], [3],
[4], assistive robotics [5], [6]. Given the input RGB/RGB-
D videos [7], [8], [9], or 3D human joint motions [10],
[11], or from other inertial/location sensors [12], [13], they
train the perception model using fully or weekly labeled
actions [8], [14], [15], or locations of annotated human/their
interactive objects [16], [17]. Recently, there are some other
works on anticipating human activities for reactive robotic
response [18], [5]. However, to enable a robot to remind
people of forgotten things, it is challenging to directly use
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Fig. 1: Our Watch-Bot watches what a human is currently doing,
and uses our unsupervised learning model to detect the human's
forgotten actions. Once a forgotten action detected (put-milk-back-
to-fridge in the example), it points out the related object (milk in
the example) by the laser spot in the current scene.

these approaches especially in a completely unsupervised
setting.

Our goal is to enable a robot, that we call Watch-Bot,
to detect humans' forgotten actions as well as localize the
related object in the current scene. The robot consists of a
Kinect v2 sensor, a pan/tilt camera (which we call camera
for brevity in this paper) mounted with a laser pointer, and a
laptop (see Fig. 2(a)). This setup can be easily deployed on
any assistive robot. Taking the example in Fig. 1, if our robot
sees a person fetch a milk from the fridge, pour the milk, and
leave without putting the milk back to the fridge, it would
�rst detect the forgotten action and the related object (the
milk), given the input RGB-D frames and human skeletons
from the Kinect; then map the object from the Kinect's view
to the camera's view; �nally pan/tilt the camera until its
mounted laser pointer pointing to the milk.

In real robotic applications, people perform a very wide
variety of actions. These are hard to learn from existing
videos on the Internet and there are few with annotations
of actions or objects. So we propose a probabilistic learning
model in a completely unsupervised setting, which can learn
actions and relations directly from the data without any
annotations, only given the input RGB-D frames with tracked
skeletons from Kinect v2 sensor.

We model an activity video as a sequence of actions,



(a) Robot System. (b) System Pipeline.

Fig. 2: (a). Our Watch-Bot system. It consists of a Kinect v2 sensor that inputs RGB-D frames of human actions, a laptop that infers the
forgotten action and the related object, a pan/tilt camera that localizes the object, mounted with a �xed laser pointer that points out the
object. (b). The system pipeline. The robot �rst uses the learned model to infer the forgotten action and the related object based on the
Kinect's input. Then it maps the view from the Kinect to the pan/tilt camera so that the bounding box of the object is mapped in the
camera's view. Finally, the camera pan/tilt until the laser spot lies in the bounding box of the target object.

so that we can understand which actions have been taken,
e.g., the example activity contains four actions:fetch-milk-
from-fridge, pour, put-milk-back-to-fridge, and leave.1 For
detecting the forgotten action and reminding, we model the
co-occurrence between actions and the interactive objects,
as well as the temporal relations between these segmented
actions, e.g., action fetch-milk-from-fridgeoften co-occurs
with and is temporally after actionput-milk-back-to-fridge,
and objectmilk occurs in both actions. Using the learned
actions and relations, we infer the forgotten actions and lo-
calize the related objects,e.g., put-milk-back-to-fridgemight
be forgotten as previously seenfetch-milk-from-fridgebefore
pouring, and seenleaving indicates he really forgot to do,
alsomilk is the object interacted in the forgotten action.

We evaluate our approach extensively on a large RGB-D
human activity dataset recorded by Kinect v2 [19]. The
dataset contains458 videos of human daily activities as
compositions of multiple actions interacted with different ob-
jects, in which people forgot actions in222videos. We show
that our approach not only improves the action segmentation
and action cluster assignment performance, but also obtains
promising results of forgotten action detection. Moreover,
we show that our Watch-Bot is able to remind humans of
forgotten actions in the real-world robotic experiments.

II. RELATED WORK

Most previous works focus on recognizing human actions
for both robotics [2], [8], [9] and computer vision [20], [21],
[22]. They model different types of information, such as the
temporal relations between actions [23], [24], the human and
the interactive object appearances and relations [25], [24].
Yang et al. [6] presented a system that learns manipulation
action plans for robot from unconstrained youtube videos.
Hu et al. [15] proposed an activity recognition system trained
from soft labeled data for the assistant robot. Chrungooet

1In the training, we do not know these action semantic labels. Instead we
assign the action cluster index.

al. [4] introduced a human-like stylized gestures for better
human-robot interaction. Piyathilakaet al. [11] used 3D
skeleton features and trained dynamic bayesian networks for
domestic service robots. However, it is challenging to directly
use these approaches for inferring the forgotten actions.

Recently, there are works on anticipating human activities
and they performed well for assistant robots [18], [5]. They
modeled the object affordances and object/human trajectories
to discriminate different actions in past activities and antic-
ipate future actions. However, in order to detect forgotten
actions, we also need to consider actions after it such as
boiling water indicates�lling kettle before it.

The output laser spot on object is also related to the
work `a clickable world' [26], which selects the appropriate
behavior to execute for an assistive object-fetching robot
using the 3D location of the click by the laser pointer.
Differently, we keep the laser pointer �xed on top of the
camera, and pan/tilt the camera iteratively to point out the
target object using a real-time view matching.

Most of these works rely on supervised learning given
fully labeled actions, or weakly supervised action labels,
or locations of human/their interactive objects. Differently,
our robot uses a completely unsupervised learning setting
that trains model only on Kinect's output RGB-D videos.
Our model is based on our previous work [19], which
presents a Casual Topic Model to model action relations in
the complex activity. In this paper, we further introduce the
human interactive object and its relations to actions, so that
the robot can localize the related object. We then design a
robotic system using the model to kindly remind people.

III. WATCH-BOT SYSTEM

We outline our Watch-Bot system in this section (see
Fig. 2). Our goal is to detect what people forgot to do
given the observation of his poses and interacted objects.
The robot consists of a Kinect v2 sensor, a pan/tilt camera
mounted with a laser pointer, and a laptop. The input to our



Fig. 3: Video representation in our approach. A video is �rst decom-
posed into a sequence of overlapping �xed-length temporal clips.
The human-skeleton-trajectories/interactive-object-trajectories from
all the clips are clustered to form the human-dictionary/object-
dictionary. Then the video is represented as a sequence of human-
word and object-word indices by mapping its human-skeleton-
trajectories/interactive-object-trajectories to the nearest human-
words/object-words in the dictionary. Also, an activity video is
about a set of action-topics/object-topics indicating which actions
are present and which object types are interacted.

system is RGB-D human activity videos with the tracked
3D joints of human skeletons from Kinect v2. Then we use
an unsupervised trained learning model (see Section IV) to
infer the forgotten action and localize the related object in
the Kinect's view. After that, we map the object bounding
box from the Kinect's view to the camera's view. Finally, we
pan/tilt the camera until the laser spot lies within the target
object in its view (see Section V).

Video Representation. To detect the action structure
in the complex activity video, we propose a video rep-
resentation that draws parallels to document modeling in
the natural language [27] (illustrated in Fig. 3). We �rst
decompose a video into a sequence of overlapping �xed-
length temporal clips. We then extract the human-skeleton-
trajectory features and the interactive-object-trajectory fea-
tures from the clips. In order to build a compact represen-
tation of the activity video, we represent it as a sequence
of words. We usek-means to cluster the human-skeleton-
trajectories/interactive-object-trajectories from all the clips to
form a human-dictionaryand anobject-dictionary, where
we use the cluster centers ashuman-wordsand object-
words. Then, the video can be represented as a sequence
of human-word and object-word indices by mapping its
human-skeleton-trajectories/interactive-object-trajectories to
the nearest human-words/object-words in the dictionary.
Also, an activity video is about a set ofaction-topicsin-
dicating which actions are present in the video, and a set of
object-topicsindicating which object types are interacted.

Visual Features. We extract both human-skeleton-
trajectory features and the interactive-object-trajectory fea-

tures from the output by the Kinect v2. The new Kinect v2
has high resolution of RGB-D frames (RGB:1920� 1080,
depth:512� 424) and improved body tracking of25 body
joints of human skeletons.

We �rst extract the human-skeleton-trajectory features of
the clip as in [19]. Then we extract the human interactive-
object-trajectory based on the human hands, image segmenta-
tion, motion detection and tracking. We collect the bounding
boxes enclosing the potential interested objects from super-
pixels output by a fast edge detection approach [28] on both
RGB and depth images. We apply the moving foreground
mask [29] to remove the unnecessary steady backgrounds
and select those segments within a distance to the human
hand joints in both 3D points and 2D pixels.

We then track the bounding box in the clip using SIFT
matching and RANSAC to get the trajectories. We use the
closest trajectory to the human hands for the clip. Finally,
we extract six kernel descriptors from the bounding box of
each frame in the trajectory: gradient, color, local binary pat-
tern, depth gradient, spin, surface normals, and KPCA/self-
similarity, which have been proven to be useful features for
RGB-D data [30]. We concatenate the object features of each
frame as the interactive-object-trajectory feature of the clip.

IV. L EARNING MODEL

We present a new unsupervised model for our Watch-Bot.
The graphic model is illustrated in Fig. 4 and the notations
are in Table I. Our model is able to infer the probability of
forgotten actions using the rich relationships between actions
and objects.

We learn the model from a training set ofD unla-
beled videos. Each video as a documentd consists ofNd

continuous clipsf cnd gN d
n =1 , each of which consists of a

human-wordwh
nd mapped to the human-dictionary and an

object-wordwo
nd mapped to the object-dictionary. We assign

action-topic to each clipcnd from K latent action-topics,
indicating which action-topic they belong to. We assign
object-topic to each object-wordwo

nd from P latent object-
topics, indicating which object-topic is interacted within the
clip. The assignments are denoted asz(1)

nd and z(2)
nd . We use

superscripts(1); (2) to denote action-topics and object-topics
respectively. After assignments, in a video, continuous clips
with the same action-topic compose an action segment. All
the segments assigned with the same action-topic from the
training set compose an action cluster.

As shown in Fig. 4, the generative process of our
model is as follows. In a documentd, we choosez(1)

dn �
Mult (� (1)

:d ); z(2)
dn � Mult (� (2)

:d ), whereMult (� ) is a multi-
nomial distribution with parameter� . The human-wordwh

nd
is drawn from an action-topic speci�c multinomial distribu-
tion � (1)

z (1)
nd

, wh
dn � Mult (� (1)

z (1)
dn

), where� (1)
k � Dir (� (1) ) is

the human-word distribution of action-topick, sampled from
a Dirichlet prior with the hyperparameter� (1) . While the
object-wordwo

nd is drawn from an action-topic and object-
topic speci�c multinomial distribution� (12)

z (1)
nd z (2)

nd

, wo
dn �



Fig. 4: The probabilistic graphic model of our approach.

Mult (� (12)

z (1)
nd z (2)

nd

), where � (12)
kp � Dir (� (12) ) is the object-

word distribution of action-topick and object-topicp. Here
we consider the same object type likebookcan be variant in
appearance in different actions such as aclose bookin fetch-
bookand aopen bookin reading. So we consider the object-
word distribution for different combinations of the action
topic and the object topic.

The co-occurrence such as actionput-down-itemsand
action take-items, objectbook and actionreading, is useful
to recognizing the co-occurring actions/objects and gives a
strong evidence for detecting forgotten actions. We model
the co-occurrence by drawing their priors from a mixture
distribution. In the graphic model,� (1)

kd ; � (2)
pd decide the

probability of action-topick and object-topicp occurring
in a documentd, where

P K
k=1 � (1)

kd = 1 ;
P P

p=1 � (2)
pd = 1 .

We construct the probabilities using a stick-breaking process
as in [19], wherev(1)

kd ; v(2)
pd serve as the priors. Then we

draw the packed vectorv:d = [ v(1)
:d ; v(2)

:d ] from a multivariate
normal distributionN (�; �) , which captures the correlations
between action-topics and object-topics.

The temporal relations between actions are also useful
to discriminating the actions using temporal ordering and
inferring the temporal consistent forgotten actions. So we
model the relative time of occurring actions as in [19]. In
detail, lettnd ; tmd 2 (0; 1) be the absolute time stamp ofn-th
clip andm-th clip, which is normalized by the video length.
tmnd = tmd � tnd is the relative time ofm-th clip relative
to n-th clip. Thentmnd is drawn from a certain distribution,
tmnd � 
( � z (1)

md ;z (1)
nd

), where � z (1)
md ;z (1)

nd
are the parameters.


( � k;l ) are K 2 pairwise action-topic speci�c relative time
distributions de�ned by a product of a Bernoulli distribution
which gives the probability of actionk after/before the action
l , and a normal distribution which estimates how long the
actionk is after/before the actionl .

A. Learning and Inference

We use Gibbs sampling [31], [32] to learn the parameters
and the infer the hidden variables from the posterior distri-

TABLE I: Notations in our model.
Symbols Meaning
D number of videos in the training database;
K number of action-topics;
P number of object-topics;
Nd number of human-words/object-words in a video;
cnd n-th clip in d-th video;
wh

nd n-th human-word ind-th video;
wo

nd n-th object-word ind-th video;
z(1)

nd action-topic assignment ofcnd ;

z(2)
nd object-topic assignment ofwo

nd ;
tnd normalized timestamp of ofcnd ;
tmnd = tmd � tnd the relative time betweencmd andcnd ;
� (1)

:d ; � (2)
:d the probabilities of action/object-topics ind-th document;

v(1)
:d ; v(2)

:d the priors of� (1)
:d ; � (2)

:d in d-th document;

� (1)
k multinomial human-word distribution from action-topick;

� (12)
kp multinomial object-word distribution from

action-topick and object-topicp;
�; � multivariate normal distribution ofv:d = [ v(1)

:d ; v(2)
:d ];

� kl relative time distribution oftmnd , between action-topick; l ;

bution of our model. The wordwh
nd ; wo

nd and the relative
time tmnd are observed in each video. We can integrate
out � (1)

k ; � (12)
kp since Dir (� (1) ); Dir (� (12) ) are conjugate

priors for the multinomial distributions� (1)
k ; � (12)

kp . We also
estimate the standard distributions including the mutivariate
normal distributionN (�; �) and the time distribution
( � kl )
using the method of moments, once per iteration of Gibbs
sampling. The topic priorsv(1)

:d ; v(2)
:d can be sampled by a

Metropolis-Hastings independence sampler [33] as in [19].
Following the convention, we use the �xed symmetric
Dirichlet distributions by setting� (1) ; � (12) as0:01.

Then we introduce how we sample the topic assignment
z(1)

nd ; z(2)
nd . We do a collapsed sampling as in Latent Dirichlet

Allocation (LDA) [27] by calculating the posterior distribu-
tion of z(1)

nd ; z(2)
nd :

p(z(1)
nd = kj� (1)

:d ; z(1)
� nd ; z(2)

nd ; tnd )

/ � (1)
kd ! (k; wh

nd )! (k; z(2)
nd ; wo

nd )p(tnd jz(1)
:d ; � );

p(z(2)
nd = pj� (2)

:d ; z(2)
� nd ; z(1)

nd ) / � (2)
pd ! (z(1)

nd ; p; wo
nd );

! (k; wh
nd ) =

N � nd
kw h + � (1)

N � nd
k + Nw � (1)

;

! (k; p; wo
nd ) =

N � nd
kpw o + � (12)

N � nd
kp + No� (12)

;

p(tnd jz(1)
:d ; � ) =

N dY

m


( tmnd j� z (1)
md ;k )
( tnmd j� k;z (1)

md
); (1)

where Nw ; No is the number of unique word types in
dictionary, N � nd

kw h =N � nd
kpw o denotes the number of instances

of word wh
nd =wo

nd assigned with action-topick/action-topic
k and object-topicp, excluding n-th word in d-th docu-
ment, andN � nd

k =N � nd
kp denotes the number of total words

assigned with action-topick/action-topick and object-topic
p. z(1)

� nd =z(2)
� nd denotes the topic assignments for all words

exceptz(1)
nd =z(2)

nd .
In Eq. (1), note that the topic assignments are de-

cided by which actions/objects are more likely to co-
occur in the video (the occurrence probabilities� (1)

kd =� (2)
kd ),

the visual appearance of the word (the word distributions



Algorithm 1 Forgotten Action and Object Detection.

Input: RGB-D videoq with tracked human skeletons.
Output: Claim no action forgotten, or output an action segment
with the forgotten action and a bounding box of the related object
in the current scene.
1. Assign the action-topics to clips and the object-topics to object-
words inq as introduced in Section IV-A.
2. Get the action segments by merging the continuous clips with
the same assigned action-topic.
3. If the assigned action-topicsK e in q contains all modeled
action-topics[1 : K ], claim no action forgotten and return;
4. For each action segmentation pointts , each not assigned
action-topickm 2 [1 : K ] � K e, and each object-topicpm 2
[1 : P ]:

Compute the probability de�ned in Eq. 2;
5. Select the top tree possible tuples(km ; pm ; t s ), and get
the forgotten action segment candidate setQ which contains
segments with topics(km ; pm );
6. Select the top forgotten action segmentp from Q with the
maximumforget score(p);
7. If forget score(p) is smaller than a threshold, claim no action
forgotten and return;
8. Segment the current frame to super-pixels using edge detec-
tion [28] as in Section III;
9. Select the nearest super-pixels to both extracted object bound-
ing box in q andp.
10. Merge the adjacent super-pixels and bound the largest one
with a rectangle as the output bounding box.
11. Return the top forgotten action segment and the object
bounding box.

! (k; wh
nd ); ! (k; p; wo

nd )) and the temporal relations (the rel-
ative time distributionsp(tnd jz(1)

:d ; � )). The time complexity
of the sampling per iteration isO(NdD(max(NdK; P )) .

For inference of a test video, we sample the unknown topic
assignmentsz(1)

nd ; z(2)
nd and the topic priorsv(1)

:d ; v(2)
:d using the

learned parameters in the training stage.

V. FORGOTTENACTION DETECTION AND REMINDING

In this section, we describe how we apply our model in our
robot to detecting the forgotten actions and reminding people.
It is more challenging than conventional action recognition,
since what to infer is not shown in the query video. There-
fore, unlike the existing models on action relations learning,
our model learns rich relations rather than the only local
temporal transitions. As a result, those actions occurred with
a relatively large time interval, occurred after the forgotten
actions, as well as the interactive objects can also be used
to detect forgotten actions,e.g., a put-back-bookmight be
forgotten as previously seen afetch-bookaction before a long
reading, and seen abook and aleaving action indicates he
really forgot it.

Our goal is to detect the forgotten action and then point out
the related object in the forgotten action using our learned
model (see Alg. 1). We �rst use our model to segment the
query video into action segments (step 1,2 in Alg. 1), and
then infer the most possible forgotten action-topic and the
related object-topic (step 4 in Alg. 1). Next we retrieve
a top forgotten action segment from the training database,
containing the inferred forgotten action-topic and the object-
topic (step 5,6 in Alg. 1). Using the extracted object in the
retrieved segment, we detect the bounding box of the related

Fig. 5: Illustration of forgotten action and object detection using
our model. Given a query video, we infer the forgotten action-topic
and object-topic in each segmentation point (t1 ; t2). Then we select
the top segment from the inferred action-topic's segment cluster
with the inferred object-topic with the maximumforget score.

forgotten object in the Kinect's view of the query video (step
8,9,10 in Alg. 1). After that, we map the bounding box of the
object from the Kinect's view to the camera's view. Finally,
we pan/tilt camera until its laser pointer points out the related
object in the current scene.

Forgotten Action and Object Inference. We �rst intro-
duce how we infer the forgotten action-topic and object-topic
using the dependencies in our learned model. After assigning
the action-topics and object-topics to the query videoq, we
consider adding one additional clip̂c consisting ofŵh ; ŵo

into q in every action segmentation pointts (see Fig 5). Then
the probabilities of the missing action-topicskm with object-
topics pm in each segmentation pointts can be computed
following the posterior distribution in Eq. (1):

p(z(1)
ĉ = km ; z(2)

ĉ = pm ; t ĉ = ts jother)

/ � (1)
km d � (2)

pm dp(ts jz(1)
:d ; � )

X

w h ;w o

! (km ; wh )! (km ; pm ; wo);

s:t: t s 2 Ts; km 2 [1 : K ] � K e; (2)

where Ts is the set of segmentation points (such ast1; t2

in Fig. 5) andK e is the set of existing action-topics in the
video (fetch-book, etc. in Fig. 5). Thus[1 : K ] � K e are the
missing topics in the video (put-down-items, etc. in Fig. 5).
p(ts jz(1)

:d ; � ); ! (km ; wh ); ! (km ; pm ; wo) can be computed as
in Eq. (1). Here we marginalized̂wh ; ŵo to avoid the effect
of a speci�c human-word or object-word.

Note that, in Eq. (2), the closer topics would have
higher probabilities� (1)

kd ; � (2)
pd to co-occur in this query

video as they are drawn from the learned joint distri-
bution. The action-topics which are more consistent with
the learned temporal relations would have higher probabil-
ity p(ts jz(1)

:d ; � ). The marginalized word-topic distributionP
w h ;w o ! (km ; wh )! (km ; pm ; wo) give the likelihood of the

topic learned from training data.
Forgotten Action and Object Detection. We then in-

troduce how we retrieve a top action segment from the
training database. We �rst select the top three tuples
(km ; pm ; ts) using the above probability. These action seg-
ments consist a forgotten action candidate segment setQ.
We then retrieve the segment fromQ with the maxi-
mum forget score(p) = ave(D(f pm ; f qf ); D(f pm ; f qt )) �



max(D(f pf ; f qt ); D(f pt ; f qf )) , where D(; ) is the average
pairwise distances between frames,ave(; ); max(; ) are the
average and max value. The front and the tail of the forgotten
action segmentf pf ; f pt need to be similar to the tail of the
adjacent segment inq beforets and the front of the adjacent
segment inq after ts: f qt ; f qf . The middle of the forgotten
action segmentf pm need to be different tof qt ; f qf , as it is
a different action forgotten in the video2. If the maximum
score is below a threshold or there is no missing topics
(i.e:; K e = [1 : K ]) in the query video, we claim there
is no forgotten actions.

Then we detect the bounding box of the related forgotten
object in the current scene. We segment the current frame
into super-pixels as in Section III, then search the nearest
super-pixels using the extracted object in the top retrieved
action, �nally merge the adjacent super-pixels and bound the
largest one with a bounding box.

Real Object Pointing. We describe how we pan/tilt the
camera to point out the real object. We �rst compute the
transformation homography matrix between the frame of the
Kinect and the frame of the pan/tilt camera using keypoints
matching and RANSAC, which can be done very fast within
0:1 second. Then we can transform the detected bounding
box from the Kinect's view to the pan/tilt camera's view.
Since we �x the position of the laser spot in the pan/tilt
camera view, next we only need to pan/tilt the camera till
the laser spot lies within the bounding box of the target
object. To avoid the coordinating error caused by distortion
and inconsistency of the camera movement, we use an
iterative search plus small step movement instead of one
step movement to localize the object (illustrated in Fig. 2).
In each iteration, the camera pan/tilt a small step towards to
the target object according to the relative position between
the laser spot and the bounding box. Then the homography
matrix is recomputed in the new camera view, so that the
bounding box is mapped in the new view. Until the laser
spot is close enough to the center of the bounding box, the
camera stops moving.

VI. EXPERIMENTS

A. Dataset
We evaluate our Watch-Bot in a challenging human activ-

ity RGB-D dataset [19] consisting of458videos of about230
minutes in total recorded by the Kinect v2 sensor. Each video
in the dataset contains2-7 actions interacted with different
objects (see examples in Fig. 6). We asked7 subjects to
perform human daily activities in8 of�ces and 5 kitchens
with complex backgrounds and recorded the activities in
different views. It is composed of fully annotated21 types of
actions (10 in the of�ce, 11 in the kitchen) interacted with23
types of objects. The participants �nish tasks with different
combinations of actions and ordering. Some actions occur
together often such as�ll-kettle andboil-water, while some
are not always together. Some actions are in a �x order such

2Here the middle, front, tail frames are20%-length of segment centering
on the middle frame, starting from the �rst frame, and ending at the last
frame in the segment respectively.

asturn-on-monitorandturn-off-monitorwhile some occur in
random order. Also, in the dataset, people forgot actions in
222videos. There are3 types of forgotten actions in 'of�ce'
and5 types in 'kitchen'.

B. Baselines

We compare four unsupervised approaches. They are Hid-
den Markov Model (HMM) [34], LDA topic model [27],
our previous work Causal Topic Model(CaTM) [19] and our
Watch-Bot Topic Model (WBTM). We use the same human
skeleton and RGB-D features introduced in Section III. In
LDA, actions and objects are modeled independently as
the priors of action/object assignments are sampled from
a �x Dirichlet prior and there is no relative time between
actions modeled. For HMM, similarly we set action states
which generates both human and object trajectory features of
each clip, and object states which generates object trajectory
features. Since there is no object modeled in CaTM, we only
evaluate its activity related performance.

In the experiments, we set the number of action-
topics/object-topics and states for HMM equal to or more
than ground-truth action/object classes. For LDA, CaTM and
our WBTM, the clip length is set to20 frames, densely
sampled by step one and the size of human/object dictionary
is set to500. The forgotten action candidate set for different
approaches consists of the segments with the inferred missing
topics by transition probabilities for HMM, the topic priors
for LDA. After inference, we use the same forgotten action
and object detection method as introduced in Section V.

C. Evaluation Metrics

We test in two environments `of�ce' and `kitchen'. In each
environment, the dataset is split into a train set with mostly
full videos (of�ce: 87, kitchen 119) and a few forgotten
videos (of�ce: 10, kitchen10), and a test set with a few full
videos (of�ce: 10, kitchen 20) and mostly forgotten videos
(of�ce: 89, kitchen113). We train the models in the train set
and evaluate the following metrics in the test set.

Action Segmentation and Cluster Assignment.As in
evaluation for unsupervised clustering, we map the action
cluster in the train set to the ground-truth action labels
by counting the mapped frames between action-topics and
ground-truth action classes as in [19] . Then we can use the
mapped action class label for evaluation.

We measure the performance in two ways. Per frame:
we computeframe-wise accuracy (Frame-Acc), the ratio of
correctly labeled frames. Segmentation: we consider a true
positive if the union/intersection of the detected and the
ground-truth segments is greater than40% as in [23]. We
computesegmentation accuracy (Seg-Acc), the ratio of the
ground-truth segments that are correctly detected andseg-
mentation average precision (Seg-AP)by sorting all action
segments using the average probability of their words' topic
assignments. All above three metrics are computed by taking
the average of each action class.

Forgotten Action and Object Detection.We measure the
forgotten action detection accuracy (FA-Acc)by the portion



(a) turn-off-monitor (b) take-item

(c) fetch-from-fridge (d) �ll-kettle

Fig. 6: Action examples in the dataset. The left is RGB frame and
the right is depth frame with human skeleton (yellow).

TABLE II: Action segmentation and cluster assignment results, and
forgotten action/object detection results.

`of�ce'(%) Seg-Acc Seg-AP Frame-Acc FA-Acc FO-Acc

HMM 19.4 23.1 27.3 32.2 20.4
LDA 12.2 19.6 18.4 15.7 10.5

CaTM 32.9 34.6 38.5 41.5 -
WBTM 35.2 36.0 41.2 46.2 36.4

`kitchen'(%) Seg-Acc Seg-AP Frame-Acc FA-Acc FO-Acc

HMM 17.2 18.8 20.3 12.4 5.3
LDA 6.7 17.1 14.4 10.8 5.3

CaTM 29.0 25.5 34.0 20.5 -
WBTM 30.7 28.5 36.9 24.4 20.6

of correct detected forgotten action or correctly claiming no
forgotten actions. We consider the output forgotten action
segments by the compared approaches containing over50%
ground-truth forgotten actions as correct. We measure the
forgotten object detection accuracy (FO-Acc)by the typical
object detection metric, that considers a true positive if the
overlap rate (union/intersection) between the detected and
the ground-truth object bounding box is greater than40%.

D. Results

Table II, Fig. 7 and Fig. 8 show the main results of
our experiments. We discuss our results in the light of the
following questions.

How well did forgotten action/object detection per-
form? In Table II, we can see that our model achieves
a promising results for complex activities with multiple
objects in variant environments in the completely unsuper-
vised setting. Our models CaTM and WBTM show better
performance than traditional uncorrelated topic model LDA,
since the co-occurrence and temporal structure are well
learned. They outperform HMM, since we consider both
the short-range and long-range action relations while HMM
only considers the local neighboring states transitions. Our
WBTM model improves the performance over CaTM on
action clustering and forgotten action detection, also is able
to detect the forgotten object, because action and object
topics are factorized and their relations are well modeled.

How important is it to consider relations between
actions and objects?From the results, we can see that
the model which did well in forgotten action detection also
performed well in detecting forgotten object. Since our model
well considers the relations between the action and the
object, it shows better performance in both forgotten action
and forgotten object detection than HMM and LDA which

Fig. 7: Action segmentation Acc/AP varied with the number of
action-topics in `of�ce' dataset.

Fig. 8: Forgotten action/object detection accuracy varied with the
number of action-topics in `of�ce' dataset.

models action and object independently as well as CaTM
which only models the actions.

How successful was our unsupervised approach in
learning meaningful action-topics? From Table II and
Fig 7, we can see that the unsupervised learned action-
topics can be semantic meaningful even though ground-truth
semantic labels are not provided in the training. It can also
be seen that, the better action segmentation and cluster as-
signment performance often indicates better forgotten action
detection performance, since actions in the complex activity
should be �rst well segmented and discriminated for next
stage forgotten action/object detection.

How did the performance change with the number of
action-topics? We plot the performance curves varied with
the action-topic number in Fig. 7 and Fig. 8. It shows that the
performance does not change much with the action-topics.
This is because a certain action might be divided into several
action-topics but more variations are also introduced.

E. Robotic Experiments

In this section, we show how our Watch-Bot reminds
people of the forgotten actions in the real-world scenarios.
We test each two forgotten scenarios in `of�ce' and `kitchen'
respectively (put-back-book, turn-off-monitor, put-milk-back-
to-fridgeandfetch-food-from-microwave). We use a subset of
the dataset to train the model in each activity type separately.
In each scenario, we ask3 subjects to perform the activity
twice. Therefore, we test24 trials in total. We evaluate three
aspects. One is objective, the success rate (Succ-Rate): the
laser spot lying within the object as correct. The other two
are subjective, the average Subjective Accuracy Score (Subj-
AccScore): we ask the participant if he thinks the pointed
object is correct; and the average Subjective Helpfulness
Score (Subj-HelpScore): we ask the participant if the output



Fig. 9: An example of the robotic experiment. The robot detects the human left the food in the microwave, then points to the microwave.

TABLE III: Robotic experiment results. The higher the better.

Succ-Rate(%) Subj-AccScore(1-5) Subj-HelpScore(1-5)

HMM 37.5 2.1 2.3
LDA 29.2 1.8 2.0

WBTM 62.5 3.5 3.9

of the robot is helpful. Both of them are in1 � 5 scale, the
higher the better.

Table III gives the results of our robotic experiments. We
can see that our robot can achieve over60% success rate
and gives the best performance. In most cases people think
our robot is able to help them understand what is forgotten.
Fig. 9 gives an example of our experiment, in which our
robot observed what a human is currently doing, realized
he forgot to fetch food from microwave and then correctly
pointed out the microwave in the scene.

VII. C ONCLUSION

In this paper, we enabled a Watch-Robot to automatically
detect people's forgotten actions. We showed that our robot is
easy to setup and our model can be trained with completely
unlabeled videos without any annotations. We modeled an
activity video as a sequence of action segments, which we
can understand as meaningful actions. We modeled the co-
occurrence between actions and the interactive objects as
well as the temporal relations between these segmented
actions. Using the learned relations, we inferred the forgotten
actions and localized the related objects. We showed that our
approach improved the unsupervised action segmentation and
cluster assignment performance, and was able to detect the
forgotten action on a complex human activity RGB-D video
dataset. We showed that our robot was able to remind people
of forgotten actions in the real-world robotic experiments by
pointing out the related object using the laser pointer.
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