1. Overview

GOAL: Propose an efficient and exact inference algorithm based on branch-and-bound (BB) to solve the human pose estimation problem on loopy graphical models.

Motivation:
- Cast human pose estimation problem as MAP-MRFs inference problem
- Solving MAP inference on general MRFs is challenging

Contributions:
- Source code available online (http://www.eecs.umich.edu/vision/BBproj.html)
- Cast human pose estimation problem as MAP-MRFs inference problem
- Novel data structure (BMT) and an efficient search routine
- Flexible bound by relaxing the loopy model into a mixture of star models.
- Up to 74 times faster than competing techniques [2]!

Cons:
- Approximated model;
- Stopping criteria:
 \[\sum_i \beta_i (h_i, \cdot) + \sum_j \beta_j (h_j, \cdot) = 0 \]

2. Branch-and-Bound Basic

- **Bound:** \[UB(H_{\text{map}}), LB(H_{\text{map}}) \] of \(f(h; \theta) \)
- **Branching:** \(H_{\text{map}} = H_N \cup H_{\text{map}} \cap H_N \)
- **Stopping criteria:** \(UB(H_{\text{map}}) = LB(H_{\text{map}}) \)

3. Flexible Bound

Mixture of Star Models:

\[
f(h; \theta; \phi) = \sum_i \lambda_i \beta_i (h_i, \cdot) + \sum_{ij} \beta_{ij} (h_i, h_j)
\]

S.t.: \(\beta_i (h_i, \cdot) + \beta_j (h_j, \cdot) = \delta (h_i, h_j) \)

Models:
- Tree Model [3,11]
- Loopy Model [6,7,9,10]

Pros:
- Efficient inference by dynamic programming (O(H^2)).
- More interactions between parts.

Cons:
- Exact inference NP-hard.
- Common misclassification errors.

4. Efficient Bound

Naive Bound:

\[
UB(H_{\text{map}}), LB(H_{\text{map}}) \quad \text{is states.}
\]

Branch-Max-Tree (BMT): Similar to [5]
- 1D array:
 \[\lambda(\beta_{ij}) = \max_{h \in H} \beta_{ij}(h, \cdot) \]
- **Efficient data structure:** given A = [10 8 -1 5].

BMT:
- Building time: O(H)
- Query time: O(1)
- Time complexity: O(H).

5. Branching Strategy

Guided Variable Selection (GVS): Split the selected variable, e.g., human pose: select a specific body part.

- Re-define Upper Bound [2]:
 \[
 UB(H_{\text{map}}; \phi) = \max_{h} f(h; \theta, \phi) = \sum_i \lambda_i \beta_i (h_i, \cdot)
 \]
- Define node-wise Local-Primal-Dual-Gap (NLPDG)
 \[\delta(h) = \lambda(h) - \lambda^*(h) \]

Properties of NLPDG:

- Non-Negative:
 \[\sum_{ij} \beta_{ij}(h_i, h_j) \geq 0 \]

Primal-Dual Gap (PDG):

- Solve 13 out of 18 sequences within 20 minutes.

6. Experiment Results

Baseline Methods: CP [2] \(O(H^4) \)

Objective:

Extending a tree model:

- CPA: 7 out of 18 sequences within 20 minutes.

References

7. Conclusion

Flexible bound for MRFs with different structures (HPE and SM).

- BMT and OBMS are used to speed up from \(O(H^4) \) to \(O(log(H)) \).
- Faster than state-of-the-art exact Inference (CP) [2].
- Loopless model achieves superior accuracy than tree model.

Correspondence

Min Sun
Murali Telaprolu
Honglak Lee
Silvio Savarese
Dept. of Electrical Engineering and Computer Science, University of Michigan Ann Arbor, USA