

Estimating the Aspect Layout of Object Categories Yu Xiang and Silvio Savarese Electrical and Computer Engineering, University of Michigan at Ann Arbor {yuxiang, silvio}@eecs.umich.edu

Introduction

Goal

Detect objects, identify objects' 3D poses, and estimate objects' 3D layout from a single image

Motivation

• Beyond 2D bounding boxes: provide richer 3D characterization of detected objects

• Relevant to applications such as robotics, autonomous navigation and object manipulation

Contributions

• Joint object detection, pose estimation and aspect layout estimation

• Training by view-invariant part templates; inject rectification process into inference

• Obtain significant improvement in viewpoint accuracy over state-ofthe-art on public datasets

Aspect Part Definition

A portion of the object whose entire 3D surface is approximately either entirely visible from the observer or entirely non-visible (i.e., occluded).

Related Concepts

Aspect graph; object affordance; functional part; geometrical attributes of objects; object-human interaction

Acknowledgements

We acknowledge the support of ARO grant W911NF-09-1-0310, NSF CPS grant #0931474 and a KLA-Tencor Fellowship.

Aspect Layout Model **Input:** single 2D image *I* **Output:** object label for a category $Y \in \{+1, -1\}$ part configuration in 2D $C = (\mathbf{c}_1, \dots, \mathbf{c}_n), \mathbf{c}_i = (x_i, y_i, s_i)$ part center coordinates x_i and y_i , part shape in 2D S_i **Posterior distribution:** $P(Y, C | I) = P(Y, L, O, V | I), L = (\mathbf{l}_1, \dots, \mathbf{l}_n), \mathbf{l}_i = (x_i, y_i)$ Viewpoint V = (a, e, d)3D object $O = (O_1, ..., O_n)$ Modeling **Conditional Random Field** $P(Y,L,O,V|I) \propto E(Y,L,O,V,I)$ $\left[\sum_{i} V_{1}(\mathbf{l}_{i}, O, V, I) + \sum_{i} V_{2}(\mathbf{l}_{i}, \mathbf{l}_{j}, O, V), \text{ if } Y = +1\right]$ **Energy function** E(Y,L,O,V,I) = -0, if Y = -1HOG features 20 **Unary potential** $V_1(\mathbf{l}_i, O, V, I) = \begin{cases} \mathbf{w}_i^T \phi(\mathbf{l}_i, O, V, I), \text{ if unoccluded} \end{cases}$ α_i , if occluded **Pairwise potential** $V_2(\mathbf{l}_i, \mathbf{l}_j, O, V) = -w_x(x_i - x_j + d_{ij,O,V} \cos(\theta_{ij,O,V}))^2$ $-w_{v}(y_{i}-y_{j}+d_{ij,O,V}\sin(\theta_{ij,O,V}))^{2}$ Maximal margin learning: structural SVM **Model inference:** belief propagation for each *O* and *V* Reference

2] C. Gu and X. Ren. Discriminative mixture-of-templates for viewpoint classification. In ECCV, 2010. 3] S. Savarese and L. Fei-Fei. 3d generic object categorization, localization and pose estimation. In ICCV, 2007 J. Liebelt and C. Schmid. Multi-view object class detection with a 3D geometric model. In CVPR, 2010

ICCV, 2011. [7] M. Stark, M. Goesele, and B. Schiele. Back to the future: Learning shape models from 3d cad data. In BMVC, [8] H. Su, M. Sun, L. Fei-Fei, and S. Savarese. Learning a dense multiview representation for detection, viewpoint classificati nd synthesis of object categories. In ICCV, 2009 [9] M. Arie-Nachimson and R. Basri. Constructing implicit 3d shape models for pose estimation. In ICCV, 2009 [10] M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for category specific multiview object localization. In CVPR, 2009

Conclusion

- and aspect part localization
- object affordances

1. 3DObject dataset [3]

Train on 5 instances, test on 5 instances for 8 views of each category Car category

LM Full		l Root	DPM	[1]	[2]	[3]				1				.eg	ory	
80.7	77.7		67.	9	74.2 57.2				ĩ	^{0.95} ر				-		_
81.8	8	1.3	83.	9	n/a	n/a				0.9		17				
e				Car					10.44	0.8		1				
[5]	ALM	[4]	[6]	[7]	[5] [8	3]	[9]		0.75 0.7	/				ALM Fu	11
75.0	93.4	85.4	85.3	81	70) 6	7	48.5		0.65					 ALM Ro DPM [1] 	01
n/a	98.4	n/a	99.2	89.9	9 76.	.7 55	.3	n/a		1		2	aining	3	4 t size	
	• -		_		- 7								inning	30		

Method	ALM Full	ALM Root	DPM [1]	[10]
Viewpoint	64.8	58.1	56.6	41.6
Detection	96.4	97.5	98.1	85.4

Test on 10 instances for 16 views

3. New ImageNet dataset

Category	Bed	Chair	Sofa	Table	Mean
DPM [1]	56.2	41.2	44.0	56.4	49.5
ALM Root	37.5	23.4	39.6	35.4	34.0
ALM Full	62.7	73.1	65.0	52.6	63.4

• Presented a new model for joint object detection, pose estimation

• Able to handle large number of viewpoints, localize parts with approximately correct shapes, and reason about self-occlusions • Potentially useful for recognizing functional parts or estimating