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layout from a single image
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Motivation

ABeyond 2D bounding boxes: provide richer 3D characterization of
detected objects

ARelevant to applications such as robotics, autonomous navigation
and object manipulation

Contributions

AJoint object detection, pose estimation and aspect layout estimation
ATraining by view-invariant part templates; inject rectification process
into inference

AODbtain significant improvement in viewpoint accuracy over state-of-
the-art on public datasets
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Aspect Layout Model
Input: single 2D image |

Output: object label for a category Y | {1 3

part configuration in 2D C =(c,,...,C.),C =(X, ¥, S)
part center coordinates X and Y,, part shapein 2D S

Posterior distribution:

P(Y1C‘ I): P(Y1 LQV‘ I)1 L:(l’“l'n )’Ii :@(’y
3D object O=(Q,...,Q)

3D CAD models

3D point cloud 3D object

Experiments
1. 3DObject dataset [3]

Train on 5 instances, test on 5 instances for 8 views of each category

Aspect Part

Definition L B
A portion of the object whose entire 3D surface | | S

is approximately either entirely visible from the
observer or entirely non-visible (i.e., occluded).

Related Concepts

Aspect graph; object affordance; functional part; geometrical
attributes of objects; object-human interaction

Modeling
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Unary potential Vi(,,0V,1)=
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Maximal margin learning: structural svm
Model inference: belief propagation for each Qand Vv

Method | ALM Full | ALM Root | DPM [1] | [2] | [3] ] lancategony
Viewpoint 80.7 77.7 67.9 74.2 | 57.2 5095 & 4
Detection 81.8 81.3 83.9 | n/a| n/a S % i hl
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Method |ALM | [4] | [5] |ALM | [4] | [6] | [7] | [5] | [8] | [9] %0_7 *f\m Eui't_
Q2 —+— 00
Viewpoint | 91.4 | 80.8 | 75.0|93.4 | 85.4 | 85.3 | 81 /0 67 | 48.5 > 065 —=—DPM [1]
Detection [93.0 | n/fa | n/fa | 98.4 | n/a | 99.2 |89.9|76.7|55.3| n/a 1 2 3 4 5
tralnlng set size
2- EPFL Car dataSEt [10] Method ALM Full | ALM Root | DPM [1] | [10]

Viewpoint 64.8 58.1 56.6 |41.6
Detection 96.4 97.5 98.1 85.4

Train on 10 instance
Test on 10 instances for 16 views

3. NEW ImagENEt dataSEt Category | Bed | Chair | Sofa | Table | Mean

. . DPM |1 56.2 | 41.2 |44.0| 56.4 | 49.5
Train on half of the instances =

. ALM Root | 37.5 | 23.4 | 39.6 | 35.4 | 34.0
Test on half for 7 views ALM Full | 62.7 ] 73.1 | 65.0 | 52.6 | 63.4
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Conclusion

APresented a new model for joint object detection, pose estimation
and aspect part localization

AAble to handle large number of viewpoints, localize parts with
approximately correct shapes, and reason about self-occlusions
APotentially useful for recognizing functional parts or estimating
object affordances




