CS231A

Computer Vision: From 3D reconstruction to Recognition

Professor Silvio Savarese

Computational Vision and Geometry Lab
CS231A

- **Instructor**
 - Silvio Savarese
 - ssilvio@stanford.edu
 - Office: Gates Building, room: 228
 - Office hour: Tues 3:30-4:30pm or under appoint.

- **CAs:**
 - Kevin Wong
 - David Held
 - Jiayuan (Mark) Ma
 - Chris Lengerich

- **Class Time & Location**
 - Tu Th 11:00am - 12:15PM – Nvidia Auditorium
CS231A

Prerequisites:

• CS 131 or equivalent; It is encouraged and preferred that you have taken CS221 or CS229, or have equivalent knowledge.

Course assignments:

• 4 problem sets (first problem released next week!)
• 1 mid-term exam (take home, 48 hours)
• 1 project
• Suggested text books:

CS231A

Grading policy

• Homeworks: 40%
 – 4 homeworks

• Mid term exam: 15%

• Course project: 40%
 – mid term progress report 5%
 – final report 30%
 – presentation 10%

• Attendance and class participation: 5%
 – Questions, answers, remarks...
Grading policy

• Late policy home works:
 – If 1 day late, 50% off the grade for that homework
 – Zero credits if more than one day.
 – A "48-hours one-time late submission bonus" is available; that is, you can use this bonus to submit your HW late after at most 48 hours. This is one time bonus: After you use your bonus, you must adhere to the standard late submission policy.
 – No exceptions will be made.
 – No "late submission bonus" is allowed when submitting your exam or project.

• Late policy project:
 – If 1 day late, 25% off the grade for the project
 – If 2 days late, 50% off the grade for the project
 – Zero credits if more than 2 days

• Collaboration policy
 – Read the student code book, understand what is ‘collaboration’ and what is ‘academic infraction’.
 – Discussing project assignment with each other is allowed, but coding must be done individually
 – Home works or class project coding policy: using online code or other students/researchers’ code is not allowed in general. Exceptions can be made and individual cases will be discussed with the instructor.
Course Project

- Replicate an interesting paper
- Comparing different methods to a test bed
- A new approach to an existing problem
- Original research
- 1 or 2 TBA large scale projects (5-10 students each)

- Write a 8-page paper summarizing your results
- Release the final code
- Give a presentation

- We will introduce projects in 1-2 weeks

- Important dates: look up class schedule
Course Project

• Form your team:
 – 1-3 people
 – the quality is judged regardless of the number of people on the team
 – be nice to your partner: do you plan to drop the course?

• Evaluation
 – Quality of the project (including writing)
 – Final project presentation (spotlight and/or poster presentation)

For final project due dates please consult webpage
Lecture 1

Introduction

• An introduction to computer vision
• Course overview
“There was a table set out under a tree in front of the house, and the March Hare and the Hatter were having tea at it.”

“The table was a large one, but the three were all crowded together at one corner of it …”

From “A Mad Tea-Party” Alice's Adventures in Wonderland by Lewis Carroll
Computer vision

Image/video

Object 1
- semantic

... Object N
- semantic
Computer vision

- Image/video
- Object 1
 - semantic
 - geometry
- Object N
 - semantic
 - geometry
Computer vision

Image/video

Object 1
- semantic
- geometry

Object N
- semantic
- geometry

spatial & temporal relations
Computer vision

Image/video

Object 1
- semantic
- geometry

Object N
- semantic
- geometry

spatial & temporal relations

Scene
- Semantic
- geometry

Object 1

Object N
Computer vision studies the **tools and theories** that enable the design of machines that can **extract useful information from imagery data** (images and videos) toward the goal of **interpreting the world**

Information: features, 3D structure, motion flows, etc...

Interpretation: recognize objects, scenes, actions, events
Computer vision and Applications
Fingerprint biometrics
Augmentation with 3D computer graphics
3D object prototyping
Computer vision and Applications

- New features detector/descriptors
- CV leverages machine learning
Face detection

Face-hunting cameras boost Nikon

Japanese camera maker Nikon has tripled its profits on the back of strong sales of digital cameras that automatically focus on human faces.
Face detection

Sample image: Subject as seen on the COOLPIX 5900 camera’s color LCD and when using Nikon’s Face-priority AF function.
Web applications

1. Upload your photo
2. Apply some makeup
3. Choose a hairstyle
Panoramic Photography
3D modeling of landmarks
Computer vision and Applications

- Large scale image matching
- Efficient SLAM/SFM
- Better clouds 😊
- More bandwidth
- Increase computational power
Image search engines
Visual search and landmarks recognition

Google Goggles
Visual search and landmarks recognition
Augmented reality
Motion sensing and gesture recognition
Mobileye: Vision systems in high-end BMW, GM, Volvo models

Source: A. Shashua, S. Seitz
Computer vision and Applications

Sources: K. Grauman, L. Fei-Fei, S. Laznebick
Computer vision and Applications

1990

2000

2010

EosSystems
digitalPersona.
brickstream
2d3sensing
Autostich
MOBILEYE
Nikon
Kooaba
Mirriad
CREAFORM
KINECT
eBay
RUGMENT
Google Goggles
kooaba
Photosynth

35
Computer vision and Applications

1990 2000 2010

3D

EosSystems

2D

digitalPersona. brickstream Nikon TAAZ Google Goggles kooaba

2d3sensing

Microsoft Photosynth

CREAFORM

AJUGMENT

Google Goggles
Current state of computer vision

3D Reconstruction
• 3D shape recovery
• 3D scene reconstruction
• Camera localization
• Pose estimation

2D Recognition
• Object detection
• Texture classification
• Target tracking
• Activity recognition
Current state of computer vision

3D Reconstruction

- 3D shape recovery
- 3D scene reconstruction
- Camera localization
- Pose estimation

Lucas & Kanade, 81
Chen & Medioni, 92
Debevec et al., 96
Levoy & Hanrahan, 96
Fitzgibbon & Zisserman, 98
Triggs et al., 99
Pollefeys et al., 99
Kutulakos & Seitz, 99
Levoy et al., 00
Hartley & Zisserman, 00
Dellaert et al., 00
Rusinkiewic et al., 02
Nistér, 04
Brown & Lowe, 04
Schindler et al., 04
Lourakis & Argyros, 04
Colombo et al., 05

Golparvar-Fard, et al. JAEI 10
Pandey et al. IFAC, 2010
Pandey et al. ICRA 2011
Savarese et al. IJCV 05
Savarese et al. IJCV 06
Microsoft’s PhotoSynth
Snavely et al., 06-08
Schindler et al., 08
Agarwal et al., 09
Frahm et al., 10
Current state of computer vision

3D Reconstruction

- 3D shape recovery
- 3D scene reconstruction
- Camera localization
- Pose estimation

Lucas & Kanade, 81
Chen & Medioni, 92
Debevec et al., 96
Levoy & Hanrahan, 96
Fitzgibbon & Zisserman, 98
Triggs et al., 99
Pollefeys et al., 99
Kutulakos & Seitz, 99
Levoy et al., 00
Hartley & Zisserman, 00
Dellaert et al., 00
Rusinkiewic et al., 02
Nistér, 04
Brown & Lowe, 04
Schindler et al, 04
Lourakis & Argyros, 04
Colombo et al. 05
Golparvar-Fard, et al. JAEI 10
Pandey et al. IFAC , 2010
Pandey et al. ICRA 2011
Savarese et al. IJCV 05
Savarese et al. IJCV 06
Microsoft’s PhotoSynth
Snavely et al., 06-08
Schindler et al., 08
Agarwal et al., 09
Frahm et al., 10
Current state of computer vision

2D Recognition

- Object detection
- Texture classification
- Target tracking
- Activity recognition

Turk & Pentland, 91
Poggio et al., 93
Belhumeur et al., 97
LeCun et al. 98
Amit and Geman, 99
Shi & Malik, 00
Viola & Jones, 00
Felzenszwalb & Huttenlocher 00
Belongie & Malik, 02
Ullman et al. 02
Argawal & Roth, 02
Ramanan & Forsyth, 03
Weber et al., 00
Vidal-Naquet & Ullman 02
Fergus et al., 03
Torralba et al., 03
Vogel & Schiele, 03
Barnard et al., 03
Fei-Fei et al., 04
Kumar & Hebert ’04
He et al. 06
Gould et al. 08
Maire et al. 08
Felzenszwalb et al., 08
Kohli et al. 09
L.-J. Li et al. 09
Ladicky et al. 10,11
Gonfaus et al. 10
Farhadi et al., 09
Lampert et al., 09
Current state of computer vision

2D Recognition

- Object detection
- Texture classification
- Target tracking
- Activity recognition

Turk & Pentland, 91
Poggio et al., 93
Belhumeur et al., 97
LeCun et al. 98
Amit and Geman, 99
Shi & Malik, 00
Viola & Jones, 00
Felzenszwalb & Huttenlocher 00
Belongie & Malik, 02
Ullman et al. 02
Argawal & Roth, 02
Ramanan & Forsyth, 03
Weber et al., 00
Vidal-Naquet & Ullman 02
Fergus et al., 03
Torralba et al., 03
Vogel & Schiele, 03
Barnard et al., 03
Fei-Fei et al., 04
Kumar & Hebert ’04
He et al. 06
Gould et al. 08
Maire et al. 08
Felzenszwalb et al., 08
Kohli et al. 09
L.-J. Li et al. 09
Ladicky et al. 10,11
Farhadi et al., 09
Lampert et al., 09
Current state of computer vision

3D Reconstruction
- 3D shape recovery
- 3D scene reconstruction
- Camera localization
- Pose estimation

2D Recognition
- Object detection
- Texture classification
- Target tracking
- Activity recognition

Perceiving the World in 3D!
Visual processing in the brain

where pathway (dorsal stream)

what pathway (ventral stream)
Visual processing in the brain

where pathway (dorsal stream)

what pathway (ventral stream)
CS 231A course overview

1. Geometry
 - How to extract 3d information?
 - Which cues are useful?
 - What are the mathematical tools?

2. Semantics
Camera systems

Establish a mapping from 3D to 2D
How to calibrate a camera

Estimate camera parameters such as pose or focal length
Single view metrology

Estimate 3D properties of the world from a single image
Single view metrology

Estimate 3D properties of the world from a single image
Multiple view geometry
Mathematical tools

Epipolar geometry

Tomasi & Kanade (1993)

Photoconsistency
Structure from motion

Courtesy of Exford Visual Geometry Group
3D Models

Scanning Michelangelo’s “The David”

- The Digital Michelangelo Project
- 2 BILLION polygons, accuracy to .29mm
CS 231A course overview

1. Geometry

2. Semantics

Semantics:
- How to recognize objects?
- How to classify images or understand a scene?
- How to recognize what humans are doing?
Object recognition and categorization

- Building
- Downtown Chicago
- Pedestrians crossing street
- Car
- Clock
Classification:
Is this an forest?

No!
Classification:
Does this image contain a building? [yes/no]

Yes!
Detection:
Does this image contain a car? [where?]
Detection:
Which objects do this image contain? [where?]
Detection:
Accurate localization (segmentation)
Detection:
Estimating 3D geometrical properties

Building
45 degree
10 meters away

Person, back

Car, side view,
3 meters away
Challenges: viewpoint variation
Challenges: illumination

image credit: J. Koenderink
Challenges: scale
Challenges: deformation
Challenges: occlusion

Magritte, 1957
Challenges: background clutter

Kilmeny Niland. 1995
Challenges: object intra-class variation
~10,000 to 30,000
Activity understanding
Activity understanding
CS 231A course overview

1. Geometry
2. Semantics

Joint recovery of geometry and semantics!
Joint reconstruction and recognition

Input images
Joint reconstruction and recognition

Input images
“There was a table set out under a tree in front of the house, and the March Hare and the Hatter were having tea at it.”

“The table was a large one, but the three were all crowded together at one corner of it …”

From “A Mad Tea-Party” Alice's Adventures in Wonderland by Lewis Carroll
<table>
<thead>
<tr>
<th>Lect.</th>
<th>Date</th>
<th>Topic</th>
<th>Link</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tues 1.7</td>
<td>Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Thur 1.9</td>
<td>Camera models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tues 1.14</td>
<td>Camera calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Thur 1.16</td>
<td>Single view metrology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tues 1.21</td>
<td>Epipolar geometry & Stereo systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Wed 1.23</td>
<td>Structure from motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Tues 1.28</td>
<td>Structure from motion/ SLAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Thur 1.30</td>
<td>Volumetric stereo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Tues 2.4</td>
<td>Fitting and Matching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Thur 2.6</td>
<td>Recognition: intro; bag of words models (I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Tues 2.11</td>
<td>Visual Classification: bag of words models (II)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Thur 2.13</td>
<td>Visual classification – deep nets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Tues 2.18</td>
<td>Object detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Thur 2.20</td>
<td>3D Object recognition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Tues 2.25</td>
<td>Scene understanding & segmentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Thur 2.27</td>
<td>Scene understanding & segmentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Tues 3.4</td>
<td>3D Scene understanding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Thur 3.6</td>
<td>Activity understanding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Tues 3.11</td>
<td>Project presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Thur 3.13</td>
<td>Project presentations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CS231
Introduction to Computer Vision

Next lecture: Camera systems