Information Transport in 2D and 3D Between Visual Media

Leonidas Guibas
Stanford University

October 2014
BAVM
Image Networks
But also of Shapes, Mixed, Etc.
Relations Between Visual Data
Linear Operators

Functors, Categories, Colimits
Each Data Set Is Not Alone

- The interpretation of a particular piece of geometric data is deeply influenced by our interpretation of other related data.

3D Segmentation
And Each Data Set Relation is Not Alone

State of the art algorithm applied to the two vases
Map re-estimated using advice from the collection

3D Mapping
Societies, or Social Networks of Data Sets

Our understanding of data can greatly benefit from extracting these relations and building relational networks.

We can exploit the relational network to

- transport information around the network
- assess the validity of operations or interpretations of data (by checking consistency against related data)
- assess the quality of the relations themselves (by checking consistency against other relations through cycle closure, etc.)

Thus the network becomes the great regularizer in joint data analysis.
Semantic Structure Emerges from the Network
Key: Relationships as Collections of Correspondences or Maps

- Multiscale mappings
 - Point/pixel level
 - part level

Maps capture what is the same or similar across two data sets
How can we make data set relationships concrete, tangible, storable, searchable objects?

How can we understand the “relationships among the relationships” or maps?
Good Correspondences or Maps are Information Transporters

- texture and parametrization
- segmentation and labels
- deformation
A Dual View: Functions and Operators

Functions on data
- Properties, attributes, descriptors, part indicators, etc.
- But also opinions, beliefs, etc.

Operators on functions
- Maps of functions to functions

Curvature
Parts
SIFT flow, C. Liu 2011
Functional Maps (a.k.a. Operators)

[M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, L. G., Siggraph ’12]
Starting from a Regular Map ϕ

ϕ: lion \rightarrow cat
Attribute Transfer via Pull-Back

\[T_\phi : \text{cat} \rightarrow \text{lion} \]
A Contravariant Functor

from cat to lion

Functions on cat are transferred to lion using T_ϕ.

T_ϕ is a linear operator (matrix)

$T_\phi : L^2(\text{cat}) \to L^2(\text{lion})$
The Functional Framework

- An ordinary shape map lifts to a linear operator mapping the function spaces
- With a truncated hierarchical basis, compact representations of functional maps are possible as ordinary matrices
- Map composition becomes ordinary matrix multiplication
- Functional maps can express many-to-many associations, generalizing classical 1-1 maps

Using truncated Laplace-Beltrami basis
Suppose we don’t know C. However, we expect a pair of functions $f : M \rightarrow \mathbb{R}$ and $g : N \rightarrow \mathbb{R}$ to correspond. Then, C must be s.t.

$$Ca \approx b$$

where $f = \sum_i a_i \phi_i^M$, $g = \sum_i b_i \phi_i^N$

Given enough $\{a_i, b_i\}$ pairs in correspondence, we can recover C through a linear least squares system.
Suppose we don’t know C. However, we expect a pair of functions $f : M \to \mathbb{R}$ and $g : N \to \mathbb{R}$ to correspond. Then, C must be s.t.

$$Ca \approx b$$

Function preservation constraint is quite general and includes:

- Descriptor preservation (e.g. Gaussian curvature, spin images, HKS, WKS).
- Landmark correspondences (e.g. distance to the point).
- Part correspondences (e.g. indicator function).
- Texture preservation
Commutativity Constraints

In addition, we can phrase operator commutativity constraint, given two operators $S_1 : \mathcal{F}(M, \mathbb{R}) \to \mathcal{F}(M, \mathbb{R})$ and $S_2 : \mathcal{F}(N, \mathbb{R}) \to \mathcal{F}(N, \mathbb{R})$.

Thus: $CS_1 = S_2 C$ or $\|CS_1 - S_2 C\|$ should be minimized.

Note: this is a linear constraint on C. S_1 and S_2 could be symmetry operators or e.g. Laplace-Beltrami or Heat operators.
Lemma 1:

The mapping is *isometric*, if and only if the functional map matrix commutes with the Laplacian:

\[C \Delta_1 = \Delta_2 C \]
Map Estimation Quality

A very simple method that puts together a modest set of constraints and uses 100 basis functions outperforms state-of-the-art:

SCAPE

TOSCA

Roughly 10 probe functions + 1 part correspondence
App: Shape Differences

[R. Rustamov, M. Ovsjanikov, O. Azercot, M. Ben-Chen, F. Chazal, L.G. Siggraph ’13]
A Functional View of Distortions

To measure distortions induced by a map, track how inner products of vectors change after transporting.

To measure distortions induced by a map, track how inner products of functions change after transporting.
A metric is defined by a functional inner product

\[h^M(f, g) = \int_M f(x)g(x) d\mu(x) \]

So we can compare \(M \) and \(N \) by comparing

\[h^N(F(f), F(g)) \]

The functional map \(F \) transports these functions to \(N \), where we repeat this measurement with the inner product \(h^N(F(f), F(g)) \)
Measurement Discrepancies

Both can be considered as inner products on the cat

\[\int_{\text{lion}} F(f) F(g) \, d\mu_l \neq \int_{\text{cat}} fg \, d\mu_c \]
The Universal Compensator

Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences de Paris

Riesz Representation Theorem

There exists a linear operator

$$V : L^2(\text{cat}) \to L^2(\text{cat})$$

such that

$$\langle f, g \rangle_{\text{after}} = \langle f, V(g) \rangle_{\text{before}}$$
Area-Based Shape Difference:

\[V \approx F^T F \]

\[
\int_{lion} F(f)F(g) \neq \int_{cat} fg
\]

\[
\int_{lion} F(f)F(g) = \int_{cat} fV(g)
\]
Intrinsic Shape Space
Analogies: D relates to C as B relates to A

\[D = C + (B - A) \]

hands raised up
Shape Analogies

A B A

C D

output

A B

output
The Network View
Map Networks for Related Data

Networks of “samenesses”
A Functorial View of Data

We shall say that the exact sequence (*) splits if \(\text{Im} (A' \to A) \) is a direct summand of \(A \). In this case, there exist homomorphisms \(A' \to A \to A' \) which together with the homomorphisms \(A' \to A \to A' \) yield a direct sum representation of \(A \).

Let \(F \) be a module and \(X \) a subset of \(F \). We shall say that \(F \) is free with \(X \) as base if every \(x \in F \) can be written uniquely as a finite sum \(\sum \lambda_i x_i \), \(\lambda_i, x_i \in X \). If \(X \) is any set we may define \(F_X \) as the set of all formal finite sums \(\sum \lambda_i x_i \). If we identify \(x \in X \) with \(1x \in F_X \), then \(F_X \) is free with base \(X \).

In particular, if \(A \) is a module we may consider \(F_A \). The identity mapping of the base of \(F_A \) onto \(A \) extends then to a homomorphism an exact sequence

\[
0 \to R_A \to F_A \to A \to 0.
\]

A diagram

\[
\begin{array}{ccc}
A & \to & B \\
\downarrow & & \downarrow \\
C & \to & D
\end{array}
\]

of modules and homomorphisms, is said to be commutative if the compositions \(A \to B \to D \) and \(A \to C \to D \) coincide. Similarly the diagram

\[
\begin{array}{ccc}
A & \to & B \\
\downarrow & & \downarrow \\
C
\end{array}
\]

is commutative, if \(A \to B \to C \) coincides with \(A \to C \).

We shall have occasion to consider larger diagrams involving several squares and triangles. We shall say that such a diagram is commutative, if each component square and triangle is commutative.

Proposition 1.1. (The "S lemma"). Consider a commutative diagram

\[
\begin{array}{ccc}
A_0 & \overset{f_0}{\to} & A_1 \\
\downarrow & & \downarrow \\
A_2 & \overset{f_2}{\to} & A_3
\end{array}
\]

with exact rows. If

1. \(\text{Coker} \ f_2 = 0 \), \(\text{Ker} \ f_1 = 0 \), \(\text{Ker} \ f_2 = 0 \), then \(\text{Ker} \ f_0 = 0 \). If
2. \(\text{Coker} \ f_1 = 0 \), \(\text{Coker} \ f_2 = 0 \), \(\text{Ker} \ f_3 = 0 \), then \(\text{Coker} \ f_0 = 0 \).
Yes, But With a Statistical Flavor

- Yes, straight out of the playbook of homological algebra / algebraic topology
- But, the maps
 - are not given by canonical constructions
 - they have to be estimated and can be noisy
 - the network acts as a regularizer …
 - commutativity still very important
- imperfections of commutativity in function transport convey valuable information: consistency vs. variability – “curvature” in shape/image space
Cycle-Consistency \equiv Low-Rank

In a map network, commutativity, path-invariance, or cycle-consistency are equivalent to a low rank or semidefiniteness condition on a big mapping matrix X:

$$
X =\begin{pmatrix}
I_m & X_{1,2} & \cdots & X_{1,n} \\
X_{1,2} & I_m & \cdots & \vdots \\
\vdots & \vdots & I_m & X_{(n-1),n} \\
X_{n,1} & \vdots & X_{n,(n-1)} & I_m
\end{pmatrix}.
$$

Conversely, such a low-rank condition can be used to regularize functional maps.
Shared Structure Discovery
Entity Extraction in Images

Task: jointly segment a set of related images
- same object, different viewpoints/scales:
- similar objects of the same class:

Benefits and challenges:
- Images can provide weak supervision for each other
- But exactly how should they help each other? How to deal with clutter and irrelevant content?

[F. Wang, Q. Huang, L. G., ICCV ’13]
Co-Segmentation via an Image Network

- Image similarity graph based on GIST
- Each edge has global image similarity w_{ij} and functional maps in both directions;
- Sparse if large.

Graph for iCoseg-Ferrari

Graph for PASCAL-Plane
The Pipeline

a) Superpixel graph representation of images

b) Functions over these graphs expressed in terms of the eigenvectors of the graph Laplacian

c) Estimation of functional maps along network edges such that
 • Image features are preserved
 • Maps are cycle consistent in the network

d) The “cow functions” emerge as the most consistently transported set
Superpixel Representation

- Over-segment images into super-pixels
- Build a graph on super-pixels
 - Nodes: super-pixels
 - Edges weighted by length of shared boundary
 Encoding Functions over Graphs

- Basis of functional space
 - First M Laplacian eigenfunctions of the graph
 \[f = \sum_{j=1}^{M} f_j b_j^i = B_i f \]

- Reconstruct any function with small error (M=30)

Binary indicator function
Reconstructed function
Thresholded reconstructed function

Reconstruction error (%)
Number of Bases

Graph showing reconstruction error over varying number of bases.
Functional map:

A linear map between functions in two functional spaces

\[f' = X_{ij} f \quad X_{ij} \in \mathcal{R}^{M \times M} \]

Can be recovered by a set of probe functions
Recover functional maps by aligning image features:

\[f_{ij}^{\text{feature}} = \| X_{ij} D_i - D_j \|_1 \]

Features (probe functions) for each super-pixel:
- average RGB color, 3-dimensional;
- 64 dimensional RGB color histogram;
- 300-dimensional bag-of-visual-words.
Joint Estimation of Functional Maps, II

Regularization term:

\[f_{ij}^{\text{reg}} = \| X_{ij} \Lambda_i - \Lambda_j X_{ij} \|^2 \]

- Correspond bases of similar spectra
- Enforce sparsity of map

Map with regularization

Map without regularization

\[\Lambda_i, \Lambda_j \text{ diagonal matrices of Laplacian eigenvalues} \]
Incorporating map cycle consistency:

A transported function along any loop should be identical to the original function:

\[X_{i_k i_0} \cdots X_{i_1 i_2} X_{i_0 i_1} f = f \quad \iff \quad X_{i_j} Y_i = Y_j, \quad \forall (i, j) \in G \]

Consistency term:

\[f_{\text{cons}} = \sum_{(i,j) \in G} w_{i,j} f_{i_j} \text{cons} = \sum_{(i,j) \in G} w_{i,j} \| X_{i_j} Y_i - Y_j \|_F^2 \]

Image global similarity weight via GIST
Joint Estimation of Functional Maps, III

Plato’s allegory of the cave

\[X_{ij} \approx Y_j^{-1}Y_i \]

\(X \) 30x30, \(Y \) 30x20
Joint Estimation of Functional Maps, IV

Overall optimization

\[
\min \sum_{(i,j) \in G} w_{ij} \left(f_{ij}^{\text{feature}} + \mu f_{ij}^{\text{reg}} + \lambda f_{ij}^{\text{cons}} \right)
\]

\[
s.t. \quad Y^T Y = I_m
\]

Alternating optimization:

Fix Y, solve X \quad \implies \quad Independent QP problems

\[
X_{ij}^* = \arg \min_X \left(f_{ij}^{\text{feature}} + \mu f_{ij}^{\text{reg}} + \lambda f_{ij}^{\text{cons}} \right)
\]

Fix X, solve Y \quad \implies \quad Eigenvalue problem

\[
\min \quad \text{trace}(Y^T W Y)
\]

\[
s.t. \quad Y^T Y = I_m
\]

\[
W_{ij} = \begin{cases}
\sum_{(i,j') \in G} w_{ij'} (I_m + X_{ij'}^T X_{ij'}) & i = j \\
-w_{ij} (X_{ji} + X_{ij}^T) & (i, j) \in G \\
0 & \text{otherwise}
\end{cases}
\]
Consistency Matters

Source image

Target image

Without cycle consistency

With cycle consistency
Generating Consistent Segmentations

- Two objectives for segmentation functions consistent under functional map transportation agreement with normalized cut scores:

$$f^{\text{map}} = \sum_{(i,j) \in G} w_{ij} \| X_{ij} f_i - f_j \|^2$$

- Joint optimization:

$$f^{\text{seg}} = \sum_{i=1}^{N} f_i^T B_i^T L_i B_i f_i$$

We look for network fixed points!

$$\min f^{\text{seg}} + \gamma f^{\text{map}} \quad \text{s.t.} \quad \sum_{i=1}^{N} \| f_i \|^2 = 1$$
Experiments

- **iCoseg dataset**
 - Very similar or the same object in each class;
 - 5~10 images per class.

- **MSRC dataset**
 - Similar objects in each class;
 - ~30 images per class.

- **PASCAL data set**
 - Retrieved from PASCAL VOC 2012 challenge;
 - All images with the same object label;
 - Larger scale;
 - Larger variability.
iCoseg data set

New unsupervised method

- Mostly outperforms other unsupervised methods
- Sometimes even outperforms supervised methods
- Supervised input is easily added and further improves the results

<table>
<thead>
<tr>
<th>Class</th>
<th>Joulin '10</th>
<th>Rubio '12</th>
<th>Vicente '11</th>
<th>Fmaps -uns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska Bear</td>
<td>74.8</td>
<td>86.4</td>
<td>90.0</td>
<td>90.4</td>
</tr>
<tr>
<td>Red Sox Players</td>
<td>73.0</td>
<td>90.5</td>
<td>90.9</td>
<td>94.2</td>
</tr>
<tr>
<td>Stonehenge1</td>
<td>56.6</td>
<td>87.3</td>
<td>63.3</td>
<td>92.5</td>
</tr>
<tr>
<td>Stonehenge2</td>
<td>86.0</td>
<td>88.4</td>
<td>88.8</td>
<td>87.2</td>
</tr>
<tr>
<td>Liverpool FC</td>
<td>76.4</td>
<td>82.6</td>
<td>87.5</td>
<td>89.4</td>
</tr>
<tr>
<td>Ferrari</td>
<td>85.0</td>
<td>84.3</td>
<td>89.9</td>
<td>95.6</td>
</tr>
<tr>
<td>Taj Mahal</td>
<td>73.7</td>
<td>88.7</td>
<td>91.1</td>
<td>92.6</td>
</tr>
<tr>
<td>Elephants</td>
<td>70.1</td>
<td>75.0</td>
<td>43.1</td>
<td>86.7</td>
</tr>
<tr>
<td>Pandas</td>
<td>84.0</td>
<td>60.0</td>
<td>92.7</td>
<td>88.6</td>
</tr>
<tr>
<td>Kite</td>
<td>87.0</td>
<td>89.8</td>
<td>90.3</td>
<td>93.9</td>
</tr>
<tr>
<td>Kite panda</td>
<td>73.2</td>
<td>78.3</td>
<td>90.2</td>
<td>93.1</td>
</tr>
<tr>
<td>Gymnastics</td>
<td>90.9</td>
<td>87.1</td>
<td>91.7</td>
<td>90.4</td>
</tr>
<tr>
<td>Skating</td>
<td>82.1</td>
<td>76.8</td>
<td>77.5</td>
<td>78.7</td>
</tr>
<tr>
<td>Hot Balloons</td>
<td>85.2</td>
<td>89.0</td>
<td>90.1</td>
<td>90.4</td>
</tr>
<tr>
<td>Liberty Statue</td>
<td>90.6</td>
<td>91.6</td>
<td>93.8</td>
<td>96.8</td>
</tr>
<tr>
<td>Brown Bear</td>
<td>74.0</td>
<td>80.4</td>
<td>95.3</td>
<td>88.1</td>
</tr>
<tr>
<td>Average</td>
<td>78.9</td>
<td>83.5</td>
<td>85.4</td>
<td>90.5</td>
</tr>
</tbody>
</table>

Kuettel’12 (Supervised) | Unsupervised Fmaps
Image+transfer | Full model | 87.6 | 91.4 | 90.5

Supervised method

New unsupervised method

- Mostly outperforms other unsupervised methods
- Sometimes even outperforms supervised methods
- Supervised input is easily added and further improves the results
MSRC

Unsupervised performance comparison

<table>
<thead>
<tr>
<th>Class</th>
<th>N</th>
<th>Joulin ’10</th>
<th>Rubio ’12</th>
<th>Fmaps -uns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>30</td>
<td>81.6</td>
<td>80.1</td>
<td>89.7</td>
</tr>
<tr>
<td>Plane</td>
<td>30</td>
<td>73.8</td>
<td>77.0</td>
<td>87.3</td>
</tr>
<tr>
<td>Face</td>
<td>30</td>
<td>84.3</td>
<td>76.3</td>
<td>89.3</td>
</tr>
<tr>
<td>Cat</td>
<td>24</td>
<td>74.4</td>
<td>77.1</td>
<td>88.3</td>
</tr>
<tr>
<td>Car(front)</td>
<td>6</td>
<td>87.6</td>
<td>65.9</td>
<td>87.3</td>
</tr>
<tr>
<td>Car(back)</td>
<td>6</td>
<td>85.1</td>
<td>52.4</td>
<td>92.7</td>
</tr>
<tr>
<td>Bike</td>
<td>30</td>
<td>63.3</td>
<td>62.4</td>
<td>74.8</td>
</tr>
</tbody>
</table>

Supervised performance comparison

<table>
<thead>
<tr>
<th>Class</th>
<th>Vicente ’11</th>
<th>Kuettel ’12</th>
<th>Fmaps -s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>94.2</td>
<td>92.5</td>
<td>94.3</td>
</tr>
<tr>
<td>Plane</td>
<td>83.0</td>
<td>86.5</td>
<td>91.0</td>
</tr>
<tr>
<td>Car</td>
<td>79.6</td>
<td>88.8</td>
<td>83.1</td>
</tr>
<tr>
<td>Sheep</td>
<td>94.0</td>
<td>91.8</td>
<td>95.6</td>
</tr>
<tr>
<td>Bird</td>
<td>95.3</td>
<td>93.4</td>
<td>95.8</td>
</tr>
<tr>
<td>Cat</td>
<td>92.3</td>
<td>92.6</td>
<td>94.5</td>
</tr>
<tr>
<td>Dog</td>
<td>93.0</td>
<td>87.8</td>
<td>91.3</td>
</tr>
</tbody>
</table>

PASCAL

New method mostly outperforms the state-of-the-art techniques in both supervised and unsupervised settings
iCoseg: 5 images per class are shown
MSRC: 5 images per class are shown
MSRC: 5 images per class are shown
PASCAL: 10 images per class are shown
Multi-Class Co-Segmentation

[F. Wang, Q. Huang, M. Ovsjanikov, L. G., CVPR’14]

Input:
- A collection of N images sharing M objects
- Each image contains a subset of the objects

Output
- Discovery of what objects appear in each image
- Their pixel-level segmentation
Consistent Functional Maps

Partial cycle consistency:

Must deal with non-total maps

Related to topological persistence / persistent homology
Consistent Functional Maps

- **Latent functions:** \(Y_i = (y_{i1}, \ldots, y_{iL}) \)
- **Discrete variables:** \(z_i = \{z_{il} \in \{0, 1\}, 1 \leq l \leq L\} \)
- **Relationship:** \(Y_i \text{Diag}(z_i) = Y_i \)
- **Consistency:**
 \[
 X_{ij} Y_i = Y_j \text{Diag}(z_i), \quad (i, j) \in \mathcal{E}.
 \]
The consistency regularization

\[f_{\text{cons}} = \mu \sum_{(i,j) \in \mathcal{E}} \| X_{ij}Y_i - Y_j \text{Diag}(z_i) \|^2 \]

\[+ \gamma \sum_{i=1}^{N} \| Y_i - Y_i \text{Diag}(z_i) \|^2, \]

Overall optimization

\[\{ X^*_{ij} \} = \arg\min_{X_{ij}} \left(\mu f_{\text{cons}} + \sum_{(i,j) \in \mathcal{E}} f_{\text{pair}} \right) \]
Framework

(a) Input images

(b) Optimizing consistent maps

(c) Initialization

Class 1

Class 2

Class 1

Class 2

(e) Combinatorial optimization

(d) Continuous optimization

(f) Segmentation output
Initialization

- Solve for consistent segmentation with ALL images together
 \[
 f_{seg} = \frac{1}{|G|} \sum_{(i,j) \in G} \|X_{ij}s_{ik} - s_{jk}\|_F^2 + \frac{\gamma}{N} \sum_{i=1}^{N} s_{ik}^T L_i s_{ik}
 \]
 \[
 = s_k^T L s_k,
 \]

- Pick the first M eigenvectors

- Each object class is initialized as:
 \[
 C_k = \{i, \text{ s.t. } \|s_{ik}\| \geq \max_i \|s_i\|/2\} \]
Optimizing Segmentation Functions

Alternating between:

- Continuous optimization:
 - Optimal segmentation functions in each class

- Combinatorial optimization:
 - Class assignment by propagating segmentation functions
Continuous Optimization

- Optimize segmentations in each object class
- Consistent with functional maps
- Align with segmentation cues
- Mutually exclusive

\[
\min_{s_{ik}, i \in C_k} \sum_{k=1}^{M} \sum_{(i,j) \in \mathcal{E} \cap (C_k \times C_k)} \|X_{ij}s_{ik} - s_{jk}\|^2 \\
+ \gamma \sum_{l \neq k} \sum_{i \in C_k \cap C_l} (s_{il}^T s_{ik})^2 + \mu \sum_{k=1}^{M} \sum_{i \in C_k} s_{ik}^T L_i s_{ik} \\
\text{subject to } \sum_{i \in C_k} \|s_{ik}\|^2 = |C_k|, \quad 1 \leq k \leq K.
\]
Expand each object class by propagating segmentations to other images

\[
\max_{s_{ik}} \frac{1}{|\mathcal{N}(i) \cap C_k|} \sum_{j \in \mathcal{N}(i) \cap C_k} (s_{ik}^T X_{ji} s_{jk})^2 \\
- \gamma \sum_{l \neq k, i \in C_l} (s_{ik}^T s_{il})^2 - \mu s_{ik}^T L_i s_{ik}
\]

subject to \[\|s_{ik}\|^2 = 1\]
Optimizing Segmentation Functions

- More images will be included in each object class

- Segmentation functions are improved during iterations
Experimental Results

Accuracy

- Intersection-over-union
- Find the best one-to-one matching between each cluster and each ground-truth object.

Benchmark datasets

- MSRC: 30 images, 1 class (degenerated case);
- FlickrMFC data set: 20 images, 3~6 classes
- PASCAL VOC: 100~200 images, 2 classes
Experimental Results

Performance comparison on the MFCFlickr dataset

<table>
<thead>
<tr>
<th>class</th>
<th>N</th>
<th>M</th>
<th>Kim’12</th>
<th>Kim’11</th>
<th>Joulin ’10</th>
<th>Mukherjee ’11</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>20</td>
<td>6</td>
<td>40.9</td>
<td>32.6</td>
<td>24.8</td>
<td>25.6</td>
<td>46.6</td>
</tr>
<tr>
<td>Baseball</td>
<td>18</td>
<td>5</td>
<td>31.0</td>
<td>31.3</td>
<td>19.2</td>
<td>16.1</td>
<td>50.3</td>
</tr>
<tr>
<td>butterfly</td>
<td>18</td>
<td>8</td>
<td>29.8</td>
<td>32.4</td>
<td>29.5</td>
<td>10.7</td>
<td>54.7</td>
</tr>
<tr>
<td>Cheetah</td>
<td>20</td>
<td>5</td>
<td>32.1</td>
<td>40.1</td>
<td>50.9</td>
<td>41.9</td>
<td>62.1</td>
</tr>
<tr>
<td>Cow</td>
<td>20</td>
<td>5</td>
<td>35.6</td>
<td>43.8</td>
<td>25.0</td>
<td>27.2</td>
<td>38.5</td>
</tr>
<tr>
<td>Dog</td>
<td>20</td>
<td>4</td>
<td>34.5</td>
<td>35.0</td>
<td>32.0</td>
<td>30.6</td>
<td>53.8</td>
</tr>
<tr>
<td>Dolphin</td>
<td>18</td>
<td>3</td>
<td>34.0</td>
<td>47.4</td>
<td>37.2</td>
<td>30.1</td>
<td>61.2</td>
</tr>
<tr>
<td>Fishing</td>
<td>18</td>
<td>5</td>
<td>20.3</td>
<td>27.2</td>
<td>19.8</td>
<td>18.3</td>
<td>46.8</td>
</tr>
<tr>
<td>Gorilla</td>
<td>18</td>
<td>4</td>
<td>41.0</td>
<td>38.8</td>
<td>41.1</td>
<td>28.1</td>
<td>47.8</td>
</tr>
<tr>
<td>Liberty</td>
<td>18</td>
<td>4</td>
<td>31.5</td>
<td>41.2</td>
<td>44.6</td>
<td>32.1</td>
<td>58.2</td>
</tr>
<tr>
<td>Parrot</td>
<td>18</td>
<td>5</td>
<td>29.9</td>
<td>36.5</td>
<td>35.0</td>
<td>26.6</td>
<td>54.1</td>
</tr>
<tr>
<td>Stonehenge</td>
<td>20</td>
<td>5</td>
<td>35.3</td>
<td>49.3</td>
<td>47.0</td>
<td>32.6</td>
<td>54.6</td>
</tr>
<tr>
<td>Swan</td>
<td>20</td>
<td>3</td>
<td>17.1</td>
<td>18.4</td>
<td>14.3</td>
<td>16.3</td>
<td>46.5</td>
</tr>
<tr>
<td>Thinker</td>
<td>17</td>
<td>4</td>
<td>25.6</td>
<td>34.4</td>
<td>27.6</td>
<td>15.7</td>
<td>68.6</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>31.3</td>
<td>36.3</td>
<td>32.0</td>
<td>25.1</td>
<td>53.1</td>
</tr>
</tbody>
</table>

Performance comparison on the PASCAL-multi dataset

<table>
<thead>
<tr>
<th>class</th>
<th>N</th>
<th>NCut</th>
<th>MNcut</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike + person</td>
<td>248</td>
<td>27.3</td>
<td>30.5</td>
<td>40.1</td>
</tr>
<tr>
<td>Boat + person</td>
<td>260</td>
<td>29.3</td>
<td>32.6</td>
<td>44.6</td>
</tr>
<tr>
<td>Bottle + dining table</td>
<td>90</td>
<td>37.8</td>
<td>39.5</td>
<td>47.6</td>
</tr>
<tr>
<td>Bus + car</td>
<td>195</td>
<td>36.3</td>
<td>39.4</td>
<td>49.2</td>
</tr>
<tr>
<td>bus + person</td>
<td>243</td>
<td>38.9</td>
<td>41.3</td>
<td>55.5</td>
</tr>
<tr>
<td>Chair + dining table</td>
<td>134</td>
<td>32.3</td>
<td>30.8</td>
<td>40.3</td>
</tr>
<tr>
<td>Chair + potted plant</td>
<td>115</td>
<td>19.7</td>
<td>19.7</td>
<td>22.3</td>
</tr>
<tr>
<td>Cow + person</td>
<td>263</td>
<td>30.5</td>
<td>33.5</td>
<td>45.0</td>
</tr>
<tr>
<td>Dog + sofa</td>
<td>217</td>
<td>44.6</td>
<td>42.2</td>
<td>49.6</td>
</tr>
<tr>
<td>Horse + person</td>
<td>276</td>
<td>27.3</td>
<td>30.8</td>
<td>42.1</td>
</tr>
<tr>
<td>Potted plant + sofa</td>
<td>119</td>
<td>37.4</td>
<td>37.5</td>
<td>40.7</td>
</tr>
</tbody>
</table>

Performance comparison on the MSRC dataset

<table>
<thead>
<tr>
<th>class</th>
<th>N</th>
<th>Joulin’10</th>
<th>Kim’11</th>
<th>Mukherjee’11</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike</td>
<td>30</td>
<td>43.3</td>
<td>29.9</td>
<td>42.8</td>
<td>51.2</td>
</tr>
<tr>
<td>Bird</td>
<td>30</td>
<td>47.7</td>
<td>29.9</td>
<td>-</td>
<td>55.7</td>
</tr>
<tr>
<td>Car</td>
<td>30</td>
<td>59.7</td>
<td>37.1</td>
<td>52.5</td>
<td>72.9</td>
</tr>
<tr>
<td>Cat</td>
<td>24</td>
<td>31.9</td>
<td>24.4</td>
<td>5.6</td>
<td>65.9</td>
</tr>
<tr>
<td>Chair</td>
<td>30</td>
<td>39.6</td>
<td>28.7</td>
<td>39.4</td>
<td>46.5</td>
</tr>
<tr>
<td>Cow</td>
<td>30</td>
<td>52.7</td>
<td>33.5</td>
<td>26.1</td>
<td>68.4</td>
</tr>
<tr>
<td>Dog</td>
<td>30</td>
<td>41.8</td>
<td>33.0</td>
<td>-</td>
<td>55.8</td>
</tr>
<tr>
<td>Face</td>
<td>30</td>
<td>70.0</td>
<td>33.2</td>
<td>40.8</td>
<td>60.9</td>
</tr>
<tr>
<td>Flower</td>
<td>30</td>
<td>51.9</td>
<td>40.2</td>
<td>-</td>
<td>67.2</td>
</tr>
<tr>
<td>House</td>
<td>30</td>
<td>51.0</td>
<td>32.2</td>
<td>66.4</td>
<td>56.6</td>
</tr>
<tr>
<td>Plane</td>
<td>30</td>
<td>21.6</td>
<td>25.1</td>
<td>33.4</td>
<td>52.2</td>
</tr>
<tr>
<td>Sheep</td>
<td>30</td>
<td>66.3</td>
<td>60.8</td>
<td>45.7</td>
<td>72.2</td>
</tr>
<tr>
<td>Sign</td>
<td>30</td>
<td>58.9</td>
<td>43.2</td>
<td>-</td>
<td>59.1</td>
</tr>
<tr>
<td>Tree</td>
<td>30</td>
<td>67.0</td>
<td>61.2</td>
<td>55.9</td>
<td>62.0</td>
</tr>
</tbody>
</table>
Apple + picking

Baseball + kids

Butterfly + blossom
Apple + picking (red: apple bucket; magenta: girl in red; yellow: girl in blue; green: baby; cyan: pump)

Baseball + kids (green: boy in black; blue: boy in grey; yellow: coach.)

Butterfly + blossom (green: butterfly in orange; yellow: butterfly in yellow; cyan: red flower)
Cheetah + Safari

Cow + pasture

Dog + park

Dolphin + aquarium
Cheetah + Safari (red: cheetah; yellow: lion; magenta: monkey.)

Cow + pasture (red: black cow; green: brown cow; blue: man in blue.)

Dog + park (red: black dog; green: brown dog; blue: white dog.)

Dolphin + aquarium (red: killer whale; green: dolphin.)
Fishing + Alaska (blue: man in white; green: man in gray; magenta: woman in gray; yellow: salmon)

Gorilla + zoo (blue: gorilla; yellow: brown orangutan)

Liberty + statue (blue: empire state building; green: red boat; yellow: liberty statue)

Parrot + zoo (red: hand; green: parrot in green; blue: parrot in red)
Stonehenge

Swan + zoo

Thinker + Rodin
Stonehenge (blue: cow in white; yellow: person; magenta: stonehenge.)

Swan + zoo (blue: gray swan; green: black swan.)

Thinker + Rodin (red: sculpture Thinker; green: sculpture Venus; blue: Van Gogh.)
Apple + picking (red: apple bucket; magenta: girl in red; yellow: girl in blue; green: baby; cyan: pump)

Baseball + kids (green: boy in black; blue: boy in grey; yellow: coach.)

Butterfly + blossom (green: butterfly in orange; yellow: butterfly in yellow; cyan: red flower)
The Network is the Abstraction
The Network is the Abstraction

\[Y_i \quad \text{a co-limit} \quad Y_j \]

\[X_{ij} \]
Mosaicing or SLAM at the Level of Functions

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f08/www/proj4/www/gme/
Networks of Shapes and Images
Depth Inference from a Single Image

single image + shape network → inferred depth
Maps vs. Distances/Similarities
Networks vs. Graphs

A → B → C

A → B → C
Conclusion: Functoriality

Classical “vertical” view of data analysis:

- Signals to symbols
 - from features, to parts, to semantics ...

A new “horizontal” view based on peer-to-peer signal relationships

- so that semantics emerge from the network
Acknowledgements

Collaborators:

- **Current students:** Justin Solomon, Fan Wang
- **Current and past postdocs:** Adrian Butscher, Qixing Huang, Raif Rustamov
- **Senior:** Mirela Ben-Chen, Frederic Chazal, Maks Ovsjanikov

Sponsors:
A Network of MOOC Homeworks