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Image Networks




But also of Shapes, Mixed, Etc.




Relations Between Visual Data
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Each Data Set Is Not Alone

+ The interpretation of a particular piece of geometric
data is deeply influenced by our interpretation of other
related data

3D Segmentation



And Each Data Set Relation Is
Not Alone
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State of the art algorithm Map re-estimated using advice
applied to the two vases from the collection

3D Mapping



Socileties, or
Socilal Networks of Data Sets

Our understanding of data can greatly benefit from
extracting these relations and building relational networks.

We can exploit the relational network to
« transport information around the network

» assess the validity of operations or interpretations of data (by checking
consistency against related data)

« assess the quality of the relations themselves (by checking consistency
against other relations through cycle closure, etc.)

Thus the network becomes the great regularizer in joint
data analysis.



Semantic Structure Emerges

from the Network
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Key: Relationships as Collections
of Correspondences or Maps_
'

¢ Multiscale mappings
+ Point/pixel level

Maps capture what
IS the same or similar
across two data sets

10



Relationships as First-Class
Citizens

+ How can we make data set
relationships concrete, tangible,
storable, searchable objects?

+ How can we understand the
“relationships among the
relationships” or maps?
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Good Correspondences or Maps
are Information Transporters

texture and
parametrization

segmentation
and labels

deformation



A Dual View:
Functions and Operators

¢+ Functions on data

+ Properties, attributes,
descriptors, part indicators, etc.

+ But also opinions, beliefs, etc

¢+ Operators on functions
+ Maps of functions to functions SIFT flow, C. Liu 2011
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Functional Maps
(a.k.a. Operators)

[M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, L. G., Siggraph '12]
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Starting from a Regular Map ¢

¢: lion — cat
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Attribute Transfer via Pull-Back

T(p: cat — lion
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A Contravariant Functor

from cat to lion

6
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Functions on cat are transferred to lion using T,, T, is alinear operator (matrix)

Ty : L*(cat) — L*(lion)
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The Functional Framework

+ An ordinary shape map lifts to a linear operator mapping the
function spaces

+ With a truncated hierarchical basis, compact representations
of functional maps are possible as ordinary matrices

+ Map composition becomes ordinary matrix multiplication

+ Functional maps can express many-to-many associations,
generalizing classical 1-1 maps

g & £

| ‘?j Using truncated
source direct symmetric  head to tail

Laplace-Beltrami
basis
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Estimating the Mapping Matrix

Suppose we don’'t know C. However, we expect a pair of
functions f: M — Rand g : N — R to correspond. Then, C

must be s.t.
Ca=xDb

where f =3, a;¢M, g=>,bid;

Given enough {a;, b;} pairs in correspondence, we can
recover C through a linear least squares system. 19



Function Preservation Constraints

Suppose we don’'t know C. However, we expect a pair of
functions f: M — Rand g : N — R to correspond. Then, C
must be s.t.

CaxDb

Function preservation constraint is quite general and includes:

O

Descriptor preservation (e.g. Gaussian curvature, spin
Images, HKS, WKS).

Landmark correspondences (e.g. distance to the point).
Part correspondences (e.g. indicator function).

Texture preservation

20



Commutativity Constraints

In addition, we can phrase operator commutativity
constraint, given two operators s, : #(M,R) — F(M,R) and
S, : F(N,R) — F(N,R) .

F(M,R) —<— F(N,R)

s

F(M,R) —<— F(N,R)
Thus: €S, = S,C or ||CS; — S:C|| should be minimized
Note: this is a linear constraint on C. S; and S, could

be symmetry operators or e.g. Laplace-Beltrami or
Heat operators.

21



Regularization

The mapping is isometric, if and only if the functional
map matrix commutes with the Laplacian:

CAy = AsC

22



Map Estimation Quality

A very simple method that puts together a modest set of
constraints and uses 100 basis functions outperforms
state-of-the-art:
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App: Shape Differences

[R. Rustamov, M. Ovsjanikov, O. Azercot, M. Ben-Chen, F. Chazal, L.G. Siggraph '13]
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A Functional View of
Distortions

vectors

To measure distortions induced by a
map, track how inner products of Riemann
functions change after transporting.

25



The Art of Measurement

+ A metric is defined by a
functional inner product

MM (f,9) = [, f(x)g(z)du(z)

+ S0 we can compare M and N by
comparing

The functional map F

transports these functions to N,
where we repeat this

measurement with the inner

product hN(F(f),F(g))

26



Measurement Discrepancies

| PF@dn# [ tedu

|
after before

Both can be considered as
Inner products on the cat 27



The Universal Compensator

Comptes Rendus Hebdomadaires des
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Riesz Representation Theorem

There exists a linear operator

V : L?*(cat) — L?(cat

such that

f:g after — faV 4G ) )before

Frigyes Riesz

28



Area-Based Shape Difference:
Va~F'F

29



Intrinsic Shape Space

ﬁ 0.5 Area s Conformal
. 10 — 9
0.4 e ¢
< v @ 0 €l w., P S
30.3 093 21 '2.8 a W22 21 el
= 0. = 7
0.2 1224 +19 g 0533 ..18
501 g 11 of
£ 0 of E o 12
8 -13 o8 {3 5 12 o5
=-0.1 r o6 = 4
- £0.5
202 5 g a3 1
0.3 S %
v =] 1§'2 .| - -1 6
§-04} - & o §3
_{]:,b 15 3 1 51 1
1.5

0.8 <06 04 02 0 02 04 06 -5 -1 05 0 05 1 15 2 25
1st Principal Component (50.9%) 1st Principal Component (60.7%)

R

30



Analogies: D relates to C as B
relates to A

. \_ 'output >/

hands raised up
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Shape Analogies

A o
A ﬁ B
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The Network View

33



Map Networks for Related Data

Networks of “samenesses”

34



A Functorial View of-Data -

Herni Cartan

Saunders MacLane .

Samuel Eilenberg

The Information is
In the Maps
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Yes, But With a Statistical
Flavor

+ Yes, straight out of the playbook of homological algebra
[ algebraic topology

+ But, the maps
+ are not given by canonical constructions
+ they have to be estimated and can be noisy
+ the network acts as a reqgularizer ...
+ commutativity still very important

¢+ iImperfections of commutativity in function transport
convey valuable information: consistency vs.
variability — “curvature” in shape/image space

36



Cycle-Consistency = Low-Rank

+ In a map network, commutativity, path-invariance, or
cycle-consistency are equivalent to a low rank or
semidefiniteness condition on a big mapping matrix

I, X Xin
(e
X = : : I, X(n_1)m
\ Xn,l Xn,(n—l) Im )

+ Conversely, such a low-rank condition can be used to
regularize functional maps

37



Shared Structure
Discovery

38



Entity Extraction in Images
[F. Wang, Q. Huang, L. G., ICCV "13]

¢ Task: jointly segment a set of related images
¢same object dlfferent wewpomts/scales

+ Benefits and challenges:
+ Images can provide weak supervision for each other

+ But exactly how should they help each other? How to
deal with clutter and irrelevant content? 39



Co-Segmentation via an Image
Network

¢+ Image similarity graph based on GIST

+Each edge has global image similarity 7
and functional maps in both directions;
¢ Sparse if large. . Je .
&

Graph for iCoseg-Ferrari

Graph for PASCAL-Plane — 40



a) Superpixel graph representation of images

b) Functions over these graphs expressed in terms of the eigenvectors
of the graph Laplacian

c) Estimation of functional maps along network edges such that
. Image features are preserved
. Maps are cycle consistent in the network

d) The “cow functions” emerge as the most consistently transported set *



Superpixel Representation

+ Over-segment images
Into super-pixels

+ Builld a graph on super-
pixels
+Nodes: super-pixels
¢+ Edges weighted by length

of shared boundary

42



Encoding Functions over Graphs

+ Basis of functional space

¢ First M Laplacian
eigenfunctions of the graph

f=3;11 16 = Bif 1

All cases
| Shown case |
= Average

e
oo

¢ Reconstruct any function with
small error (M=30)

Binary indicator function  Reconstructed function  Thresholded
reconstructed function 43
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Joint Estimation of Functional Maps,
|

+ Functional map:

+A linear map between functions in two
functional spaces

f =X, ;f X;; € RM*M
+Can be recovered by a set of probe functions




Joint Estimation of Functional Maps,
|

¢ Recover functional maps by aligning image

features: ot iire
[ij = || Xi;D; — Djll1

+ Features (probe functions) for each super-pixel:
+ average RGB color, 3-dimensional,
+ 64 dimensional RGB color histogram;
+ 300-dimensional bag-of-visual-words.

45



Joint Estimation of Functional Maps,

N, \\; diagonal matrices

& REQU|ari2atiOn term: of Laplacian eigenvalues
reg 2
= || X A5 — A X5

¢ Correspond bases of similar spectra
+ Enforce sparsity of map

| " | . 46
Map with regularization Map W|thout regularization



Joint Estimation of Functional Maps,
1l

¢ Incorporating map cycle consistency:

+ A transported function along any loop should be
identical to the original function:

Xivio " XininXipin f =1 &——=> X;;Yi=Y;, V(,5) €@

+ Consistency term:

cons __ cons __ 2
f = Z)gwijfij = Z):g’winXz'jYz' — Y%
1,7)€ 1,J)€
Image global similarity weight via
GIST

47



Joint Estimation of Functional Maps,
1]

¢ Plato’s allegory of the cave

X 30x30, Y 30x20



Joint Estimation of Functional Maps,
\Y;

+ Overall optimization

. re
min ( Z): ny ( ffeature + ol g\ f%%ons)
1,5)€Y

st. YIY =1,

¢ Alternating optimization:
+Fix Y, solve X ——=) Independent QP problems

X}, = argminy ( fgeature e ufzgeg + A ffjons)

+Fix X, solve Y ——=> Eigenvalue problem
min trace(YZTWY) ies Wi (I + X5 Xiyr) @ =

st. YTY =1, Wi = —wi(X;+ X)) (L,4)€G
0 otherwids.



Target
image

Without
cycle
consistency

With
cycle
consistency

Consistency Matters




Generating Consistent
Se |

+TwoO
nsistent

We look for network fixed points!
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Experiments

+1Coseq dataset
+Very similar or the same object in each class;
+5~10 images per class.

+ MSRC dataset

+ Similar objects in each class;
+~30 Images per class.

+ PASCAL data set
+ Retrieved from PASCAL VOC 2012 challenge;
+ All images with the same object label;
¢ Larger scale;
¢ Larger variability.

52



Supervised

+ ICoseg data set method

+ New UﬂSUprVlsed method

'10 12 '11 -uns

* MOStIy OUtperformS Other Alaska Bear 74.8 86.4 90.0 90.4

unsupervised methods Red Sox Players ~ 73.0 ~ 90.5 909  94.2

S . Stonehengel 56.6 87.3 63.3 92.5

= Ometlmes even . Stonehenge2 86.0 88.4 88.8 87.2

outperforms supervised Liverpool FC 764 826 875  89.4

methods Ferrari 85.0 84.3 89.9 95.6

. . . . Taj Mahal 73.7 88.7 91.1 92.6

+ Supervised input is easily Flephants 704 750 431 867

added and further improves Pandas 840 600 927 886

Kite 87.0 898 90.3 93.9

the rESUItS Kite panda 73.2 78.3 90.2 93.1

Gymnastics 90.9 87.1 91.7 90.4

Skating 82.1 76.8 77.5 78.7

SR HotBalloons 852  89.0 901 904

Image+transfer  Full model Liberty Statue 90.6 91.6 93.8 96.8

87.6 91.4 90.5 Brown Bear 74.0 80.4 95.3 88.1

Average 78.9 83.5 85.4 90.%3



+ MSRC

Unsupervised performance comparison
Class Joulin | Rubio | Fmaps
10 12 -uns

Plane

Face
Cat

Car(front)
Car(back)

Bike

Supervised performance comparison

30
30
24
6
6
30

81.6
73.8
84.3
74.4
87.6
85.1
63.3

80.1
77.0
76.3
77.1
65.9
52.4
62.4

89.7
87.3
89.3
88.3
87.3
92.7
74.8

Class | Vicente | Kuettel Fmaps
'11 '12

Plane
Car
Sheep
Bird
Cat
Dog

94.2
83.0
79.6
94.0
95.3
92.3
93.0

92.5
86.5
88.8
91.8
93.4
92.6
87.8

94.3
91.0
83.1
95.6
95.8
94.5
91.3

« PASCAL

Class Kuettel Fmaps Fmaps
12 -uns

Plane 90.7 92.1 89.4
Bus 152 78 81.6 87.1 80.7
Car 255 128 76.1 90.9 82.3
Cat 250 131 777 85.5 82.5
Cow 135 64 82.5 87.7 85.5
Dog 249 121 81.9 88.5 84.2

Horse 147 68 83.1 88.9 87.0

Sheep 120 63 83.9 89.6 86.5

 New method mostly
outperforms the state-of-
the-art techniques in both
supervised and
unsupervised settings

54



iCoseg: 5 images per class are shown




ICoseg: 5 images per class are shown




ICoseg: 5 images per class are shown
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ICoseg: 5 images per class are shown




MSRC: 5 images per class are shown
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MSRC: 5 images per class are shown




PASCAL: 10 images per class are shown

SssapaRsrRLeE
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PASCAL: 10 images per class are shown

AN
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PASCAL: 10 images




PASCAL: 10 images

per clss are shown



Multi-Class Co-Segmentation
[F. Wang, Q. Huang, M. Ovsjanikov, L. G., CVPR14]

+ Input:
+A collection of N images sharing M objects
+Each image contains a subset of the objects

A 1 D

+Outut '

+Discovery of what objects appear in each
Image
+ Their pixel-level segmentation

65



Consistent Functional Maps

¢ Partial cycle consistency:

‘ ’
(‘.. e g:.’}

map network consistent (apple bucket) ) inconsistent (cycle not closed)

Must deal with non-total maps

Related to topological persistence / persistent homology

66



Consistent Functional Maps

¢ Latent functions: Y= (W, - ,vi)

¢ Discrete variables: zi={z1€{0,1},1<i< L}
¢ Relationship: Y:Diag(z) =Y;
+ Consistency:

X,;;Y; =Y ;Diag(z;), (4,5) €€.

Images

Obijects




Consistent Functional Maps

¢ The consistency regularization

fcons =p Z 1X55Y; — YjDiag(zz')HQ
(¢,5)€€

N
+7 Y IIY; — Y;Diag(z)||%,
i=1

+ Overall optimization

{XZ}} — argminXZ.j (ufcons + X fpair)
(i,7)€&€

68



Framework

'

(a) Input images (b) Optimizing consistent maps

(c) Initialization

‘,’f" 2o

Class 1

Class 2

(e) Combinatorial optimization

Class 1

Class 2 -

(d) Continuous optimization

R

(f) Segmentation output

69



Initialization

¢ Solve for consistent segmentation with
ALL images together

1 > |V e T
fseq = g > I Xijsik — sjklle + N > sigLisik
(i,5)€G =1
— Skfsk,

+ Pick the first M eigenvectors
¢ Each object class Is Initialized as:

Ci = {is St llsixll > max sll/2}

70



Optimizing Segmentation Functions

+ Alternating between:

+ Continuous optimization:
+Optimal segmentation functions in each class

+ Combinatorial optimization:

+Class assignment by propagating segmentation
functions

71



Continuous Optimization

+ Optimize segmentations in each object class
¢ Consistent with functional maps
+Align with segmentation cues

+ Mutually exclusive
M

min Y > 1 Xijsin — sl

Sik €0k p=1 (4,7)€EN(CpxCy)

M
+Y Y Ghsa)?+w Y. Y shLisi

£k 1€CNC; k=11eCy
subject to Y sl =ICkl, 1<E<K.

1€Cy, 72



Combinatorial Optimization

¢+ Expand each object class by propagating
segmentations to other images

1
max >. (sipXiisin)?
kN NG e @,
T 2 T
—v D (sigsa)” — psipLisik
l[#k,1eC

subject to  ||s;x||° =1

73



Optimizing Segmentation Functions

+ More images WI|| be mcluded IN each
object class - .

 Segmentation functions are §§
improved during iterations &=%




Experimental Results

+ Accuracy
+ Intersection-over-union

+ Find the best one-to-one matching between each
cluster and each ground-truth object.

¢+ Benchmark datasets
+ MSRC: 30 images, 1 class (degenerated case);

+ FlickrMFC data set: 20 images, 3~6 classes
+ PASCAL VOC: 100~200 images, 2 classes

75



Experimental Results

Apple
Baseball
butterfly
Cheetah

Cow
Dog
Dolphin
Fishing
Gorilla
Liberty

Parrot
Stonehenge

Swan
Thinker

Average

18
18
20
20
20
18
18

18

18
18

20
17

o w » 01 O 00 U1 O

N

40.9
31.0
29.8
32.1
35.6
34.5
34.0
20.3

41.0

315
29.9
35.3
17.1
25.6
31.3

32.6
31.3
32.4
40.1
43.8
35.0
47.4
27.2

38.8

41.2
36.5
49.3
18.4
34.4
36.3

24.8
19.2
29.5
50.9
25.0
32.0
37.2
19.8

41.1

44.6
35.0
47.0
14.3
27.6
32.0

25.6
16.1
10.7
41.9
27.2
30.6
30.1
18.3

28.1

32.1
26.6
32.6
16.3
15.7
25.1

Performance comparison on the MFCFlickr dataset

46.6
50.3
54.7
62.1
38.5
53.8
61.2
46.8

47.8

58.2
54.1
54.6
46.5
68.6
53.1

Bike 30 43.3
Bird 30 47.7
Car 30 59.7
Cat 24 31.9
Chair 30 39.6
Cow 30 52.7
Dog 30 41.8
Face 30 70.0
Flower 30 51.9
House 30 51.0
Plane 30 21.6
Sheep 30 66.3
Sign 30 58.9
Tree 30 67.0

29.9
29.9
37.1
24.4
28.7
33.5
33.0
33.2

40.2

32.2
25.1

60.8

43.2
61.2

42.8

52.5
5.6

39.4

26.1

40.8

66.4
33.4

45.7

55.9

Performance comparison on the MSRC dataset

Bike + person
Boat + person
Bottle + dining table
Bus + car
bus + person
Chair + dining table
Chair + potted plant
Cow + person
Dog + sofa
Horse + person

Potted plant + sofa

Performance comparison on the PASCAL-multi dataset

248
260
90
195
243
134
115
263
217
276
119

27.3
29.3
37.8
36.3
38.9
32.3
19.7
30.5
44.6
27.3
37.4

30.5
32.6
39.5
39.4
41.3
30.8
19.7
33.5
42.2
30.8
37.5

40.1
44.6
47.6
49.2
55.5
40.3
22.3
45.0
49.6
42.1
40.7

51.2
55.7
72.9
65.9
46.5
68.4
55.8
60.9

67.2

56.6
52.2

72.2

50.1
62.0
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Apple + picking

77



Apple + picking (red: apple bucket; magenta: girl in red; green: baby;
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Chetah + S_z_a_fari

85 ge




Cheetah + Safari (red: cheetah; magenta: monkey.)

o
- h

Wt 4 1,85 i




Fishing + Alaska

Liberty + statue_

ol

Parrot + zoo




Fishing + Alaska (blue: man in white; green: man in gray; magenta: woman in gray;

e

| c 2 B ":ni
ue: empire state building;




Stonehenge




Stonehenge (blue: cow in white; magenta: stonehenge.)

|

Swan + zoo (blue: gray swan; green: black swan.
B - = e —= =



Apple + picking (red: apple bucket; magenta: girl in red; green: baby;
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The Network is the Abstraction

86



The Network is the Abstraction

a co-limit

87



http

Mosaicing or SLAM
at the Level of Functions

JIlwww.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f08/www/projd/www/g e/

Ll g
T

88



Networks of Shapes and Images

89



Depth Inference from a Single
Image

IIIIIIIIIII

T ".j,},l":\!\\]m J ! | '

single image shape network inferred depth
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Maps vs. Distances/Similarities
Networks vs. Graphs

A B C



Conclusion: Functoriality

¢ Classical “vertical” view of data analysis:

+ Signals to symbols
+«from features, to parts, to semantics ...

—

-
— -~ -
- —
Functions over 1= Maps between = _ Networks of
data == data - _\ data sets
- - B - ' 4

+ A new “horizontal” view based on peer-to-
peer signal relationships

+ S0 that semantics emerge from the network

92
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