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Abstract

Many methods have been proposed to solve the image

classification problem for a large number of categories.

Among them, methods based on tree-based representations

achieve good trade-off between accuracy and test time ef-

ficiency. While focusing on learning a tree-shaped hierar-

chy and the corresponding set of classifiers, most of them

[11, 2, 14] use a greedy prediction algorithm for test time

efficiency. We argue that the dramatic decrease in accuracy

at high efficiency is caused by the specific design choice of

the learning and greedy prediction algorithms. In this work,

we propose a classifier which achieves a better trade-off

between efficiency and accuracy with a given tree-shaped

hierarchy. First, we convert the classification problem as

finding the best path in the hierarchy, and a novel branch-

and-bound-like algorithm is introduced to efficiently search

for the best path. Second, we jointly train the classifiers us-

ing a novel Structured SVM (SSVM) formulation with addi-

tional bound constraints. As a result, our method achieves

a significant 4.65%, 5.43%, and 4.07% (relative 24.82%,

41.64%, and 109.79%) improvement in accuracy at high

efficiency compared to state-of-the-art greedy “tree-based”

methods [14] on Caltech-256 [15], SUN [32] and ImageNet

1K [9] dataset, respectively. Finally, we show that our

branch-and-bound-like algorithm naturally ranks the paths

in the hierarchy (Fig. 8) so that users can further process

them.

1. Introduction
Large-scale visual classification is one of the core prob-

lem in computer vision. Thanks to the ongoing efforts on

collecting large scale dataset such as ImageNet [9] (15,589

non-empty synsets) and SUN dataset [32] (899 scene cate-

gories), researchers have been strongly motivated to design

methods that can scale up to large number of classes.

Among them, methods based on tree-based representa-

tions (“tree-based” methods) [11, 4, 2, 3, 16, 14, 6, 30,

23, 35] achieve good trade-off between accuracy and test

time efficiency. These methods organize the large num-

ber of classes into a tree-shaped hierarchy. At each internal

node, a classifier separates the classes into smaller subsets

to the nodes at a lower level (Fig. 1(a)). In order to achieve

test time efficiency, a greedy prediction algorithm is used

to progressively reduce the number of classes by applying

the classifiers from the top to the bottom level in the hierar-

chy. Thus, the algorithm achieves a desired “sublinear com-

plexity” (in the number of classes) during testing. In order

to achieve high accuracy, most methods focus on learning

the tree-shaped hierarchy and the corresponding set of clas-

sifiers. However, we argue that the trade-off achieved are

sub-optimal mainly due to the following reasons:

• Greedy algorithm. The prediction algorithm only ex-

plores one single path in the tree-shaped hierarchy; and

the path is greedily selected according to the order of

the classifiers applied (Fig. 1(b)-Left). This implies

that errors made at a higher level in the hierarchy can-

not be corrected later.

• Inefficient usage of training data. Rather than learn-

ing all classifiers jointly, most “tree-based” methods

learn one classifier at a time from the top level to the

bottom level gradually using fewer images correspond-

ing to a subset of classes. Thus, the classifiers at a

lower level are trained using less data than the ones

trained at a higher level.

In this paper, we propose an efficient and accurate clas-

sifier for image hierarchies which achieves a better trade-

off with a given tree-shaped hierarchy. Our contributions in

model representation, efficient inference, and learning algo-

rithm are summarized below.

• Best path model. We convert the greedy prediction

model into a “Best Path Model”, where the objective is

to find the best path in the tree-shaped hierarchy cor-

responding to the maximum sum of the classifiers re-

sponses. We formulate model learning as a Structured

SVM (SSVM) [29] problem (Eq. 4) to jointly train all

classifiers jointly using all training data.
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• Novel branch-and-bound-like search. We further

propose a novel branch-and-bound-like searching ap-

proach to efficiently find the best path without explor-

ing the whole tree nor greedily pruning out classes

(Fig. 1(b)-Right).

• Learning Bounds. Both the bounds and the model

parameters can be jointly learned using an extended

SSVM formulation with additional bound constraints

(Eq. 3) which allows us to search for a better trade-off

between efficiency and accuracy.

Our method is closely related to the one-versus-all and

“tree-based” methods as discussed in Sec. 3.2. On one hand,

our method is equivalent to an one-versus-all method en-

coded with a hierarchical structure. On the other hand, the

greedy “tree-based” methods are also a special case of our

method. By preserving both the joint training strategy of

the one-versus-all methods, and the hierarchical organiza-

tion of classes in “tree-based” methods, we show that i) our

best accuracy outperforms the accuracy of the one-versus-

all method [33] (Sec. 6); ii) our method achieves better

trade-off between efficiency and accuracy than the state-of-

the-art greedy tree-based method [14]. Most importantly,

we achieve a significant 4.65%, 5.43%, and 4.07% (relative

24.82%, 41.64%, and 109.79%) improvement in accuracy

compared to [14] on Caltech-256, SUN, and ImageNet 1K

dataset, respectively, at high efficiency. Finally, our branch-

and-bound-like algorithm naturally ranks the paths in the

hierarchy to maintain a diverse set of class predictions with-

out significantly increasing the complexity (Fig. 5).

The remainder of the paper is organized as follows.

Sec. 2 describes the related work. Detail of our model rep-

resentation, efficient branch-and-bound-like algorithm, and

learning for a better trade-off are elaborated in Sec. 3, 4,

and 5, respectively. Finally, experimental results are shown

in Sec. 6.

2. Related Work
Recently many methods for large scale classification

have been proposed. Despite their differences, they can be

divided into two groups according to how they convert the

multi-class classification problem into multiple binary clas-

sification problems.

The first group of methods is generic and do not assume

that classes are organized into a hierarchy. It includes meth-

ods based on “one-versus-all” and “one-versus-one” strate-

gies, which further assume classes are unrelated (e.g., do

not share features). It also includes error correcting out-

put codes [12, 1], output-coding based methods [26, 21],

and [28] which utilize the relationship between classes (e.g.,

sharing features) to build more compact and robust models.

These methods typically show good classification accuracy.

However, the time complexity for evaluating the classifiers

are “linearly” proportional to the number of classes.

The second group of methods aims at reducing the time

complexity utilizing the hierarchical structure of classes.

[11, 4, 2, 3, 16, 14, 6, 30, 23, 35] propose different methods

to automatically build the hierarchy of classes. Other meth-

ods [37, 5] rely on a given hierarchy. Notice that, no matter

how the hierarchies are obtained, most of them rely on a

greedy algorithm to explore one single path in the hierarchy

for class prediction and train the classifier at each node of

the hierarchy separately (except [5]). Hence, the accuracy

is typically sacrificed in order to achieve “sublinear” time

complexity. In Sec. 3.1, we will describe their methods in

details and summarize their issues.

Researchers also have looked at different aspects of the

large-scale classification problem. [22, 31, 36, 25] focus on

developing efficient and effective feature representations.

Similarly, [18, 20] learn discriminative feature representa-

tions using sophisticated deep networks and achieve state-

of-the-art accuracy. Notice that their contributions are or-

thogonal to ours since our method can use other feature

representations easily to explore the trade-off between ac-

curacy and efficiency. Hence, we do not optimize the per-

formance over different features in this paper.

[10] propose the first method connecting class selective

rejection with hierarchical visual classification so that they

can generate object class labels at different levels in the hi-

erarchy while guaranteeing an arbitrarily high accuracy. It

is worth mentioning that our branch-and-bound-like algo-

rithm possesses similar property. It ranks hypotheses at dif-

ferent levels and naturally maintains a diverse set of class

predictions (properties described in Sec. 4.2).

Recently, [14] propose to learn a relaxed hierarchy which

explores the trade-off between efficiency and accuracy. In

the relaxed hierarchy, a unique class is allowed to appear at

more than one nodes at the same level which means some

classes are ignored when learning the hierarchy at a cer-

tain level. In this way, classes which are hard to separate

are handled at a lower level to improve the accuracy. At

the same time, the level of relaxation also controls the ef-

ficiency of the algorithm (i.e., the more relax the less ef-

ficient). In this paper, we explore the trade-off by finding

the best path in the hierarchy (Sec. 3.2) using an efficient

branch-and-bound-like algorithm (Sec. 4.1). Notice that our

method is orthogonal to the relaxed hierarchical model [14].

In the experiments, we achieve a better trade-off between

efficiency and accuracy by combining the relax hierarchy

with our method (Fig. 4, 6, and 7).

Our method is also related to decision forest [7] which

uses an ensemble of tree-based classifiers to improve ac-

curacy. However, the complexity increases linearly to the

number of trees. In contrast, our method increases the accu-

racy with the same complexity. Moreover, our method can

become a forest by training a set of models using bagging.

Finally, our best path model is similar to [5]. However,



they focus on learning the model efficiently by first training

a set of local classifiers then combining them into a global

classifier. In contrast, we focus on efficient prediction, and

we show that efficient prediction can be used to make train-

ing efficient as well (Sec. 5).

3. Our Model
Recall that our goal is to design a classifier for image

hierarchies which achieves a better trade-off between effi-

ciency and accuracy. In this section, we first review and

define the “tree-based” model, and then we show how to

convert the model into a “Best Path Model”.

3.1. Classical Tree-based Model.
The model organizes the set of K classes K = {1, ...,K}

into a tree-shaped hierarchy T = {V, E} with a set of nodes

V and a set of edges E . Each node v ∈ V is associated with a

set of classes Kv ⊂ K. The edges connect each node v ∈ V
to N child nodes Cv = {cev}e∈{1,...,N} and are associated

to N linear classifiers Wv = {we
v ∈ R

D}e∈{1,...,N}. The

classifier associated to the edge e generates a score Se
v(x) =

xTwe
v as a function of an input x ∈ R

D. The model requires

that the set of classes Kc at every child node is a subset of

the classes Kv at its parent node (i.e., Kc ⊂ Kv; ∀c ∈ Cv).

The notations are illustrated in Fig. 1(c).

Greedy Algorithm. Given the model, a greedy algorithm

is typically used to predict the class of the input x ∈ R
D.

The algorithm explores a single path in the tree from the

root node until a leaf node is reached as follows. Starting

from the root node (with index v = 1), the edge e cor-

responding to the largest classifier score is selected (i.e.,

e = argmaxj S
j
v(x)), and the algorithm proceeds to the

child node cev . The same selection procedure is iteratively

applied to all the child nodes visited until a leaf node is

reached. Thus, the predicted path P can be represented by

the starting node v = 1 concatenated with the sequence

of selected edges [e1, ..., eL] (i.e., P = [v; e1, e2, ..., eL]),
where L is the length of the path. This implies that the algo-

rithm only needs to evaluate the classifiers L times. Hence,

this algorithm clearly has sublinear complexity, since in the

best case, L = logK. However, this also implies that errors

made at a higher level in the hierarchy cannot be corrected

later (Fig. 1(b)-Left).

Inefficient usage of training data. Rather than learning

all classifiers jointly, most “tree-based” methods learn one

classifier at a time from the top level to the bottom level

gradually using fewer images corresponding to a subset of

classes. Thus, the classifiers at a lower level are trained

using less data than the ones trained at a higher level.

Learning the hierarchy. Most of the “tree-based” meth-

ods [11, 2, 14] address the two issues described above by

learning the hierarchy of classes to avoid i) making mis-

takes by the greedy algorithms and/or ii) training classifiers

using very few data by limiting the depth of the hierarchy.

Instead of focusing on learning hierarchy, our proposed

method addresses these two issues with a given hierarchy

while maintaining the efficiency of class predictions.

3.2. Best Path Model
Instead of defining a scoring function at each edge (i.e.,

Se
v(x) = xTwe

v), we define a scoring function SP (x) for
each path P = [v1; e1, ..., eL] as the sum of the edge scores

(i.e., SP (x) =
∑L

j=1
S
ej
vj (x)), where {v1, ..., vL+1} is the

sequence of node indices visited in the tree according to the
path P . We propose to learn a model such that the class
prediction of an input x is the class KvL+1

associated to the
leaf node vL+1 of the path P ∗ with the highest score.

P
∗ = arg max

P∈P1
SP (x) , (1)

where P1 is the set of all the paths in the tree starting from

the root node v = 1 to a leaf node.

Properties. The best path model can be considered as a spe-

cial case of one-versus-all SVM since the accumulated sum

of the classifiers parameters along each path can be treated

as the classifiers parameters for a class in the one-versus-

all SVM. The important difference is that the tree structure

enforces the parameters of two paths to be partially shared

according to the overlap of the paths. In other words, our

proposed model utilizes the knowledge of the hierarchy to

share the parameters between classes so that classes closer

in the hierarchy have more similar parameters. As we re-

port in Sec. 6, this property helps improving the accuracy

over the one-versus-all SVM. However, the time complexity

for a brute force class prediction algorithm (i.e., evaluating

all paths) is linear to the number of paths which is similar

to complexity of the one-versus-all SVM. In the next sec-

tion, we propose a novel branch-and-bound-like algorithm

to predict the class as efficient as the greedy algorithm.

4. Efficient Prediction
Instead of exploring all the paths in the tree, our branch-

and-bound-like algorithm explores only a few paths in the

tree and typically finishes in “sublinear” time.

4.1. Branch-and-Bound-Like (BB-Like) Search
Although the number of paths is large |P1|, only a few

paths are worth exploring. Hence, the key idea for achieving

“sublinear time” is to avoid exploring the whole tree during

the search (Fig. 1(b)-Right). The branch-and-bound (BB)

framework [19] allows us to do this while guarantee finding

the best path if a valid bound is given.

Recall that a path P = [v; e1, ..., eL] is defined as a route

with increasing levels in the hierarchy from node v to a leaf

node following the sequence of selected edges [e1, ..., eL].
We further define a “branch” Pv = [v; e1, ..., eF ) as a

set of paths overlapping with the segment [v; e1, ..., eF ]
starting from the node v with length F (not necessarily

reaching a leaf node) (Fig. 1(d)). For instance, the path

[v; e1, ..., eF , ..., eL] belongs to the branch [v; e1, ..., eF ).
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Figure 1: Panel (a) gives an example of the tree-shaped hierarchy, where the numbers represent object classes. Panel (b) shows an example

when the greedy algorithm gives a wrong prediction (node with a “x” symbol) by making an error at a high level. Our BB-Like algorithm

gives a correct prediction (node with a smiley face) without evaluating the whole tree (nodes in green plate are pruned). Notice that red

nodes and edges denote the ones have been evaluated. Panel (c) illustrates the notation in the tree-based model for internal and leaf nodes.

Panel (d) shows the definition of segment (red edges), path (green lines from root to leaf), and branch (a collections of paths).

Algorithm 1 Efficient Branch and Bound Prediction

Require: input x ∈ R
D, tree T , scoring function S, and

node-wise upper bound {Uv}v
Ensure: P ∗ = argmaxP∈P SP (x)

1: Initialize Q as an empty priority queue.

2: Set node index v̂ = 1, branch as P̂ = P1 and accumu-

lated score Ŝ(x) = 0 (Starting from root node).

3: repeat

4: split P̂ to [P̂ 1), ..., [P̂ N) (N sub-branches).

5: for e=1:N do

6: Update accumulated score Ŝ(x)+ = Se
v̂(x).

7: Update upper bound Û(x) = Ŝ(x) + Uce
v̂
.

8: push (cev̂, [P̂ e), Ŝ(x), Û(x)) into Q.

9: end for

10: retrieve (v̂, P̂, Ŝ(x)) from branch with max Û(x) in

Q.

11: until |P̂| == 1 (a branch consists of one single path).

12: set P ∗ = [P̂].

For each branch, we calculate the upper bound Û(x) of

the highest score that a path in the branch could take for

input x. At the beginning of the search, we start with a

branch P̂ corresponding to the set of paths in the whole

tree P1 = [1; ) (See line 2 in Algorithm 1). Then, we

continuously split the working branch P̂ to N sub-branches

{[P̂ e)}e
1 (See line 4 in Algorithm 1), and update the upper

bound Û(x) (See line 7 in Algorithm 1). The BB algorithm

organizes the search over candidate branches in a best-first

manner. Therefore, the working branch always corresponds

to the one with the highest upper bound (See line 10 in Al-

gorithm 1). The search terminates when it has identified a

branch consisting of one single path (i.e., |P̂| == 1) with

a score that is at least as good as the upper bound of all re-

maining candidate branches (See line 11 in Algorithm 1).

The best-first manner guarantees that the best path has been

found. The efficiency of the algorithm usually strongly de-

pends on the tightness of the bound. In our experiment, our

1[[v; e1, ..., eF ) e) = [v; e1, ..., eF , e). [ ) denotes concatenation.

efficient prediction algorithm is typically much faster than

the worst case complexity.

4.2. Bound Calculation
We assume that each node v caches the upper bound

Uv of paths in branch Pv starting from node v to a leaf

node can take. Hence, the upper bound Û(x) of the branch

[1; e1, ..., eF ) equals to the sum of score Ŝ(x) accumulated

from the segment [1; e1, ..., eF ] and the upper bound Uv

cached at the last node of the segment [1; e1, ..., eF ] (See

line 7 in Algorithm 1).

The tightest possible upper bound cached per node is in-
put dependent Uv(x) and can be obtained by evaluating all
the classifiers in the tree with the given input x. However,
obtaining the bound is as costly as the brute-forced search
algorithm to find the best path. Moreover, it needs to be
done once for every input. Therefore, we propose an input
independent upper bound Uv estimated from the training in-
puts X defined as,

Uv = max
x∈X

Uv(x) . (2)

The upper bounds only need to be estimated once after the

model is trained. Notice that Uv is not guaranteed to be a

valid bound since Uv is possible to be smaller than the up-

per bound Uv(x̂) of an unseen testing input x̂. However,

we found that the estimation is very reliable in practice

since the classification accuracy is typically not sacrificed

(Fig. 2). Therefore, we call it a branch-and-bound-like al-

gorithm.

Properties. Although the BB algorithm terminates when

the best path is found, much more information is kept in

the queue Q (in Algorithm 1) which ranks the evaluated

branches. We show that the rank naturally maintains a di-

verse set of predictions consisting of both branches shar-

ing similar path segments (e.g., cats and dogs) and branches

with very different path segments (e.g., tools and animals)

which can be potentially used to facilitate human-computer

interaction (Fig. 8). For example, a user would rather see a

diverse set of predictions and select the most suitable one,

than to see a similar set of predictions where all predictions

might not be suitable. In contrast, it is unclear how the



greedy tree-based methods can rank hypotheses in a prin-

cipled way.

In the next section, we describe how to learn the model

parameters using a Structured SVM formulation with the

option to jointly learn the node-wise upper bound Uv as

well.

5. Structured SVM Learning
The scoring function can be learned using a Structured

SVM (SSVM) formulation where the structured output P
encodes the path in the tree-shaped hierarchy. Considering
that we have a set of training inputs and the ground truth
path in the tree {xm, Pm}m=1∼M , we solve the following
SSVM problem,

minW,ξm
1

2
W

T
W + λ

∑

m

ξ
m

s.t. SPm(xm;W)− SP (x
m;W)

≥ ∆(P ;Pm)− ξ
m
, ∀m, ∀P ∈ P , (3)

where W = {Wv}v∈V is a vector concatenation of edge-

wise model parameters, ∆(P ;Pm) is a loss function mea-

suring incorrectness of the estimated path P , and λ con-

trols the relative weight of the sum of the violation term

(
∑

m ξm) with respect to the regularization term (WT
W).

Notice that, in our implementation, a simple zero-one loss is

used (i.e., ∆(P ;Pm) = 0 when P 6= Pm and ∆(P ;Pm) =
1 otherwise). We solve the problem using dual coordinate-

descent solver [34] to achieve fast convergence and less

memory usage, where only hard examples corresponding to

P ∗(xm) = argmaxP∈P SP (x
m) + ∆(P ;Pm) are added

to actively enforce the constraints.

Learning Bounds. Instead of learning the model param-
eters then estimating the node-wise upper bound U =
{Uv}v , we can extend the SSVM problem in Eq. 3 to jointly
learn model parameters W and node-wise upper bounds U:

minW,ξm≥0,U W
T
W + λ1

∑

m

ξ
m + λ2

∑

v

Uv

s.t. SPm(xm;W)− SP (x
m;W)

≥ ∆(P ;Pm)− ξ
m
, ∀m, ∀P ∈ P1

i) Valid bound SP̂ (x
m;W) ≤ Uv, ∀P̂ ∈ Pv

, ∀v ∈ V

ii) Reduction rate Uv ≥ γUcev
, ∀v ∈ V, ∀e ∈ 1 ∼ N , (4)

where γ is the rate of reduction of the bound Uv . Notice
that two types of additional constraints are ensured.

i) Valid bound. The scores SP̂ (x
m;W); P̂ ∈ Pv of paths

starting from node v must be lower than the node-wise upper

bound Uv .

ii) Reduction rate. The upper bound Ucev
of a child node

should be smaller than the bound Uv of a parent node by

a factor of γ.

Similar to solving Eq. 3, we only add violated constraints in

i) ii) and solve Eq. 4 using dual coordinate-descent solver
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Figure 2: Effectiveness of the branch-and-bound-like algorithm

on Caltech-256. Notice that the color-coded nodes denote mod-

els with different degree of relaxation (ρ) trained without bound

reduction rate constraints.

[34]. In Fig. 3, we show that by changing the γ value, we

explore the trade-off between the accuracy and efficiency.

During training, the BB-Like algorithm (Sec. 4.1) can

also be used to speed up the training process by efficiently

finding hard examples. However, at the beginning iteration

of solving Eq. 4, the estimated upper bound is typically

smaller than the real one since there are fewer active set

of constraints. Therefore, we increase the upper bound by

10% while applying our BB-Like algorithm in order to find

more hard examples.

6. Experiments
We evaluate our method on three publicly available

datasets (Caltech-256 [15], SUN-397 [32], and ImageNet

1K [9]). Our goals are to i) verify that our proposed

method is more accurate than the one-versus-all methods;

ii) achieve a better trade-off between accuracy and effi-

ciency compared to the state-of-the-art “tree-based” meth-

ods [14]; iii) show typical examples of ranked hypotheses

which maintains a diverse set of class predictions (Fig. 8

and technical report [27]).

6.1. Basic Setup
For accuracy, we report mean of per-class accuracy as

[14]. For testing efficiency, since each node in the tree

model is a linear classifier with equal complexity, the over-

all testing efficiency depends on the number of classifier’s
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Figure 3: The trade-off between relative complexity (Sec. 6.1

for definition) (x-axis) and accuracy (y-axis) by learning bounds

using γ = {1 (no reduction rate constraint), 2, 3} and ρ = 0.8 on

Caltech-256.
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evaluations. We calculate the mean of per-instance number

of classifier’s evaluations and report the “relative complex-

ity” which is the mean normalized by the number of classi-

fier’s evaluations of the one-versus-all method.

We compare our method to the state-of-the-art “tree-

based” method [14] and one-versus-all SVM. All methods

use the same linear SVM implementation [13] and Locality-

constrained Linear Coding (LLC) feature [31]. The value of

parameter λ (Eq. 4) for each method is selected by four-fold

cross validation on the training set. For training the tree-

shaped hierarchy, we use the released code from [14] and

allow the tree to be at most 8 levels. Given the tree-shaped

hierarchies, we train our models using SSVM (Sec. 5) to

explore a better trade-off. SSVM training in Matlab takes

about 10 hours for Caltech and Sun dataset, and about 6
days for ImageNet dataset.

6.2. Caltech-256
Caltech-256 [15] contains 256 object categories. For

each category, we randomly sampled 40 images as train-

ing data and 40 images as testing data similar to [14].

LLC feature with 21K dimension is used in order to recre-

ate the one-versus-all accuracy reported in [14]. The re-

laxed hierarchy method [14] is a very strong baseline since

it outperforms many other “tree-based” method [24, 16].

Therefore, five hierarchies corresponding to relaxed degree

ρ = {0.5, 0.6, 0.7, 0.8, 0.9} (the bigger value the less relax)

are trained for comparison.

Detail Analysis. We first verify the branch-and-bound-like

algorithm improves the efficiency without sacrificing much
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Figure 5: Classification accuracy vs. relative complexity of rank

1 to rank 5 predictions using ρ = 0.9 model on Caltech-256.
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Figure 6: Trade-off between accuracy (y-axis) and relative com-

plexity (x-axis) calculated for our method (pink-solid), relax hi-

erarchy [14] (blue-dash), and one-versus-all SVM (black-dot) on

Sun-397.

the accuracy (Fig. 2), given models trained without using

bound constraints (Eq. 3). However, without forcing the

bounds to reduce at a certain rate in the hierarchy, the effi-

ciency gain is limited. In Fig. 3, we demonstrate that dif-

ferent trade-off between accuracy and efficiency can be ex-

plored by training our models with constraints correspond-

ing to γ = {1, 2, 3} and ρ = 0.8 (Eq. 4). We further ex-

plore different combination of ρ (degree of relaxation) and

γ (bound tightness) and select the models corresponding to

the optimal trade-off between efficiency and accuracy on

the validation set 2. The efficiency-versus-accuracy perfor-

mance on the testing set is shown in Fig. 4. Notice that

our method obtains more improvement on accuracy at lower

complexity. In particular, we obtain a significant 4.65%
(relative 24.82%) improvement at ∼ 9% relative complex-

ity. We also verify that our best accuracy (35.44%) out-

performs the one-versus-all method (34.78%) (Fig. 4). Fi-

nally, Fig. 5 demonstrates that the accuracy from rank one

to rank five predictions increases 10% while the complexity

increases sublinearly.

6.3. Sun-397
We evaluate the scene classification task on SUN dataset

[32]. Similar to the setting of [32], we use 397 well-sampled

categories to evaluate our method. For each category, we

randomly sample 50 images as training data and 50 images

as testing data. LLC feature with 16K dimension is used

in order to recreate the one-versus-all accuracy reported in

[14]. Five hierarchies corresponding to relaxed degree ρ =
{0.6, 0.7, 0.8, 0.9, 1.0} are trained for comparison.

Our method achieves better accuracy (25.69%) than the

one-versus-all SVM (24.08%). and a better trade-off be-

tween efficiency and accuracy than [14] as shown in Fig. 6.

Similar to Caltech 256, our method obtains more improve-

ment on accuracy at lower complexity. In particular, we

obtain a significant 5.43% (relative 41.64%) improvement

at ∼ 5% relative complexity.

6.4. ImageNet
The dataset contains 1K object categories and 1.2 mil-

lion images. We use the same training and testing split

2One fourth of the training images are used for model selection.
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as in [17]. LLC feature with 10K dimension is used in

order to recreate the baseline one-versus-all accuracy re-

ported in [8]. Four hierarchies corresponding to relaxed

degree ρ = {0.9, 0.75, 0.6, 0.45} are trained for compari-

son. Given the tree-shaped hierarchies, we train our models

using SSVM (Sec. 5). Our method achieves better accuracy

(22.99%) than the one-versus-all SVM (21.2%), and a bet-

ter trade-off between efficiency and accuracy than [14] as

shown in Fig. 7. In particular, we obtain a significant 4.07%
(relative 109.79%) improvement at ∼ 5% relative complex-

ity. Moreover, models learned with bound constraints (pink-

solid) outperform models learned without bound constraints

(red-solid). We also apply our method on hierarchy learned

by [2] and achieve similar improvement (See technical re-

port [27]).

7. Conclusion
We propose an efficient and accurate classifier for image

hierarchies which achieves a better trade-off between effi-

ciency and accuracy. Our contributions are: i) a novel BB-

Like algorithm that utilizes the tree-hierarchy for efficient

prediction; and ii) an extended SSVM formulation that al-

lows us to search for a better trade-off between accuracy

and efficiency. On Caltech-256 [15], SUN dataset [32], and

ImageNet 1K [9], our method outperforms the one-versus-

all method in accuracy and achieves a better trade-off com-

pared to the state-of-the-art “tree-based” method [14]. Most

importantly, we achieve a significant 4.65%, 5.43%, and

4.07% (relative 24.82%, 41.64%, and 109.79%) improve-

ment, respectively, in accuracy at small values of relative

complexity compared to [14]. Finally, our BB-Like algo-

rithm naturally maintains a diverse set of class predictions

without significantly increasing the complexity. In the fu-

ture, we would like to investigate potential human-computer

interaction applications which utilize the rich output (e.g.,

the rank of class predictions) from our method.
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