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Abstract. Detecting objects, estimating their pose and recovering 3D
shape information are critical problems in many vision and robotics ap-
plications. This paper addresses the above needs by proposing a new
method called DEHV - Depth-Encoded Hough Voting detection scheme.
Inspired by the Hough voting scheme introduced in [ 13], DEHV incor-
porates depth information into the process of learning distributions of
image features (patches) representing an object category. DEHV takes
advantage of the interplay between the scale of each object patch in the
image and its distance (depth) from the corresponding physical patch
attached to the 3D object. DEHV jointly detects objects, infers their
categories, estimates their pose, and infers/decodes objects depth maps
from either a single image (when no depth maps are available in testing)
or a single image augmented with depth map (when this is available in
testing). Extensive quantitative and qualitative experimental a nalysis on
existing datasets [6,9,22] and a newly proposed 3D table-top object cate-
gory dataset shows that our DEHV scheme obtains competitive detection
and pose estimation results as well as convincing 3D shape reconstruc-
tion from just one single uncalibrated image. Finally, we demonstrate
that our technique can be successfully employed as a key building block
in two application scenarios (highly accurate 6 degrees of freedom (6
DOF) pose estimation and 3D object modeling).

1 Introduction

Detecting objects and estimating their geometric properties are crucial prob-
lems in many application domains such as robotics, autonomous navigation,
high-level visual scene understanding, activity recognition, and object modeling.
For instance, if one wants to design a robotic system for grasping and manipu-
lating objects, it is of paramount importance to encode the ability to accurately
estimate object orientation (pose) from the camera view point as well as recover
structural properties such as its 3D shape. This information will help the robotic
arm grasp the object at the right location and successfully interact with it.

This paper addresses the above needs, and tackles the following challenges:
i) Learn models of object categories by combining view speci¯c depth maps
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(a) Test Image (b) Detection (c) Partial 3D

Fig. 1. Illustration of key steps in our method. Given a single (previously) unseen
testing image (panel a), our DEHV (Depth-Encoded Hough Voting-based) scheme is
used to detect objects (panel b). Ground truth bounding box is shown in red. Our
detection is shown in green. The centers of the image patches which cast votes for the
object location are shown in red crosses. During detection, our method simultaneously
infers object depth maps of the detected object (panel c). This allows the est imation
of the partial 3D shape of the object from a single image!

(a) (b) (c) Fig. 2. Point clouds (green) from
a 3D model is registered to the in-
ferred partial 3D point cloud (red)
by DEHV (a). This allows us to
achieve an accurate 6 DOF pose
estimation (b) and realistic 3D ob-
ject modeling (c).

along with the associated 2D image of objects in the same class from di®erent
vantage points. We demonstrate that combining imagery with 3D information
helps build richer models of object categories that can in turn make detection
and pose estimation more accurate. ii) Design a coherent and principledscheme
for detecting objects and estimating their pose from either just a single image
(when no depth maps are available in testing) (Fig. 1(b)), or a single image
augmented with depth maps (when these are available in testing). In the latter
case, 3D information can be conveniently used by the detection schemeto make
detection and pose estimation more robust than in the single image case. iii)
Have our detection scheme recover the 3D structure of the object fromjust a
single uncalibrated image (when no 3D depth maps are available in testing)
(Fig. 1(c)) and without having seen the object instance during training.

Inspired by implicit shape model (ISM) [13], our method is based on a new
generalized Hough voting-based scheme [2] that incorporates depth information
into the process of learning distributions of object image patches that are com-
patible with the underlying object location (shape) in the image plane. We call
our schemeDEHV - Depth-Encoded Hough Voting scheme(Sec.3). DEHV ad-
dresses the intrinsic weaknesses of existing Hough voting schemes[13,10,16,17]
where errors in estimating the scale of each image object patch directly a®ects
the ability of the algorithm to cast consistent votes for the object existence. To
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resolve this ambiguity, we take advantage of the interplay between thescale of
each object patch in the image and its distance (depth) from the correspond-
ing physical patch attached to the 3D object, and speci¯cally use the fact that
objects (or object parts) that are closer to the camera result in image patches
with larger scales. Depth is encoded in training by using availabledepth maps of
the object from a number of view points. At recognition time, DEHV is applied
to detect objects (Fig. 1(b)) and simultaneously infer/decode depths given hy-
potheses of detected objects (Fig.1(c)). This process allows the reinforcement of
the existence of an object even if a depth map is not available in testing. If depth
maps are available in testing, the additional information can be used to further
validate if a given detection hypothesis is correct or not. As a by-product of
the ability of DEHV to infer/decode depth at recognition time, we can estimate
the location in 3D of each image patch involved in the voting, and thus recover
the partial 3D shape of the object. Critically, depth decoding can be achieved
even if just a single test image is provided. Extensive experimental analysis on a
number of public datasets (including car Pascal VOC07 [6], mug ETHZ Shape
[9], mouse and stapler 3D object dataset [21]) as well as a newly created in-
house dataset (comprising 3 object categories) are used to validate our claims
(Sec. 4). Experiments with the in-house dataset demonstrate that our DEHV
scheme: i) achieves better detection rates (compared to the traditional Hough
voting scheme); further improvement is observed when depth maps are available
in testing; ii) produces convincing 3D reconstructions from singleimages; the
accuracy of such reconstructions have been qualitatively assessed with respect
to ground truth depth maps. Experiments with public datasets demonstrate
that our DEHV successfully scales to di®erent types of categories and works in
challenging conditions (severe background clutter, occlusions). DEHV achieves
state of the art detection results on several categories in [6,9], and competitive
pose estimation results on [21]). Finally, we show anecdotal results demonstrat-
ing that DEHV is capable to produce convincing 3D reconstructions fromsingle
uncalibrated images from [6,9,21] in Fig. 12.

We demonstrated the utility of DEHV in two applications (Sec. 4.3): i) Robot
object manipulation: we show that DEHV enables accurate 6 DOF pose estima-
tion (Fig. 2(b)); ii) 3D object modeling: we show that DEHV enables the design
of a system for obtaining eye catching 3D objects models from just one single
image (Fig. 2(c));

2 Previous Work

In the last decade, the vision community has made substantial progress address-
ing the problem of object categorization from 2D images. While most of the
work has focussed on representing objects as 2D models [4,13,8] or collections of
2D models [23], very few methods have tried to combine in a principled way the
appearance information that is captured by images and the intrinsic 3D struc-
ture representative of an object category. Works by [25,21,22] have proposed
solutions for modeling the way how 2D local object features (or parts) and their
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relationship vary in the image as the camera view point changes. Other works
[11,27,14,1] propose hybrid models where reconstructed 3D object models are
augmented with features or parts capturing diagnostic appearance. Few of them
(except [26] for objects) have demonstrated and evaluated the ability to recover
3D shape information from a single query image. However, instead of using
image patches to transfer meta-data (like depth) to the testing instance as in
[26], 3D information is directly encoded into our model during trainin g. Other
works propose to address the problem of detecting and estimating geometrical
properties of single object instances [12,19,18,15]; while accurate pose estimation
and 3D object reconstruction are demonstrated, these methods cannot beeasily
extended to incorporate intra-class variability so as to detect and reconstruct
object categories. Unlike our work, these techniques also require that the ob-
jects have signi¯cant interior texture to carry out geometric regist ration. Other
approaches assume that additional information about the object is available in
both training and testing (videos, 3D range data) [20,5]. Besides relying on more
expensive hardware platforms, these approaches tend to achieve high detection
accuracy and pose estimation, but fail when the additional 3D data is either
partially or completely unavailable.

3 Depth-Encoded Hough Voting

In recognition techniques based on hough voting [2] the main idea is to repre-
sented the object as a collection of parts (patches) and have each part tocast
votes in a discrete voting-space. Each vote corresponds to a hypothesis of object
location x and classO. The object is identi¯ed by the conglomeration of votes in
the voting spaceV(O; x). V (O; x) is typically de¯ned as the sum of independent
votes p(O; x; f j ; sj ; l j ) from each part j , where l j is the location of the part, sj

is the scale of the part, andf j is the part appearance.

Previously proposed methods [13,10,16,17] di®er mainly by the mechanism
for selecting good parts. For example, parts may be either selectedby an interest
point detector [13,16], or densely sampled across many scales and locations [10];
and the quality of the part can be learned by estimating the probability [13]
that the part is good or discriminatively trained using di®erent ty pes of classi¯ers
[16,10]. In this paper, we propose a novel method that uses 3D depth information
to guide the part selection process. As a result, our constructed voting space
V(O; xjD ), which accumulates votes for di®erent object classesO at location
x, depends on the corresponding depth informationD of the image. Intuitively,
any confusing part that is selected at a wrong scale can be pruned out by using
depth information. This allows us to select parts which are consistent with the
object physical scale. It is clear that depending on whether object is closer or
further, or depending on the actual 3D object shape, the way how each patch
votes will change (Fig. 3).
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Fig. 3. Left panel shows that patches associated to the actual object parts (red boxes)
will vote for the correct object hypothesis (red dots) in the voting space on the right.
However, parts from the background or other instances (cyan boxes) will cast confusing
votes and create a false object hypothesis (green dots) in the voting space. Right panel
shows that given depth information, the patches selected in a wrong scale can be easily
pruned. As a result, the false positive hypothesis will be supported by less votes.

In detail, we de¯ne V(O; xjD ) as the sum of individual probabilities over all
observed images patches at locationl j and for all possible scalessj , i.e,

V (O; xjD ) =
X

j

Z
p(O; x; f j ; sj ; l j jdj ) dsj

=
X

j

Z
p(O; xjf j ; sj ; l j ; dj )p(f j jsj ; l j ; dj )p(sj jl j ; dj )P(l j jdj ) dsj (1)

where the summation overj aggregates the evidence from individual patch loca-
tion, and the integral over sj marginalizes out the uncertainty in scale for each
image patch. Sincef j is calculated deterministically from observation at location
l j with scale sj , and we assumep(l j jdj ) is uniformly distributed given depth, we
obtain:

V (O; xjD ) /
X

j

Z
p(O; xjf j ; sj ; l j ; dj )p(sj jl j :dj )dsj

=
X

j;i

Z
p(O; xjCi ; sj ; l j ; dj )p(Ci jf j )p(sj jl j ; dj )dsj (2)

Here we introduce codebook entryCj , matched by featuref j , into the frame-
work, so that the quality of a patch selected will be related to which codeword
it is matched to. Noting that Cj is calculated only using f j and not the lo-
cation l j , scale sj , and depth dj , we simplify p(Cj jf j ; sj ; l j ; dj ) into p(Cj jf j ).
And by assuming that p(O; xj:) does not depend onf j given Cj , we simplify
p(O; xjCj ; f j ; sj ; l j ; dj ) into p(O; xjCj ; sj ; l j ; dj ).

Finally, we decomposep(O; xj:) into p(Oj:) and p(xj:) as follows:

V (O; xjD ) /
X

j;i

Z
p(xjO; Ci ; sj ; l j ; dj )p(OjCi ; sj ; l j ; dj )p(Ci jf j )p(sj jl j ; dj ) dsj

Scale to depth mapping. We design our method so as to speci¯cally selects
image patches that tightly enclose a sphere with a ¯x radius r in 3D during
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Fig. 4. Illustration of depth to scale mapping. Right panel illustrates the concept o f
depth to scale mapping. Training under the assumption that an image patch (green
box) tightly encloses the physical 3D part with a ¯x size, our method det erministically
selects patches given the patch centerl , 3D information of the image, and focal length
t. During testing, given the selected image patches on the object, our method directly
infers the location of the corresponding physical parts and obtains the 3D shape of the
object. Left Panel illustrates the physical interpretation of Eq. 3. Unde r the assumption
that image patch (red bounding box) tightly encloses the 3D sphere with radius r , the
patch scale s is directly related to the depth d given camera focal length t and the
center l = ( u; v) of the image patch. Notice that this is a simpli¯ed illustration where
the patch center is on the yz plane. This ¯gure is best viewed in color.

training. As a result, our model enforces a 1-to-1 mappingm between scales
and depth d. This way, given the 3D information, our method deterministically
select the scale of the patch at each locationl , and given the selected patches,
our method can infer the underlying 3D information (Fig.4). In detail, given the
camera focal length t, the corresponding scales at location l = ( u; v) can be
computed ass = m(d; l) and the depth d can be inferred from d = m¡ 1(s; l).
The mapping m obeys the following relations:

s = 2( v ¡ v); v = tan( µ + Á)t; µ = arcsin(
r

dyz
); Á = arctan(

v
t

)

dyz =
d
p

t2 + v2
p

u2 + v2 + t2
: d projected onto yz plane (3)

Hence,p(sjl; d) = ±(s ¡ m(d; l)). Moreover, using the fact that there is a 1-to-1
mapping betweens and d, probabilities p(xj:) and p(Oj:) are independent to d
given s. As a result, only scales is directly in°uenced by depth.

In the case when depth is unknown,p(sjl; d) becomes a uniform distribution
over all possible scales. Our model needs to search through the scalespace to
¯nd patches with correct scales. This will be used to detect the object and
simultaneously infer the depth d = m¡ 1(s; l). Hence, the underlying 3D shape
of the object will be recovered.

Random forest codebook. In order to utilize dense depth map or infer
dense reconstruction of an object, we use random forest to e±ciently map fea-
tures f into codeword C (similar to [ 10]) so that we can evaluate patches densely
distributed over the object. Moreover, random forest is discriminatively trained
to select salient parts. Since featuref deterministically maps to C i given the i th
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random tree, the voting scoreV (O:xjD ) becomes:

V (O; xjD ) /
X

j;i

Z
p(xjO; C i (f j ); sj ; l j )p(OjC i (f j ))p(sj jl j ; dj ) dsj (4)

where the summation overi aggregates the discriminative strength of di®erent
trees. In section 3.1, we describe how the distributions ofp(xjO; C i (f j ); sj ; l j )
and p(OjC i (f j )) are learned given training data, so that each patch j knows
where to vast votes during recognition.

3.1 Training the model

We assume that for a number of training object instances, the 3D reconstruction
D of the object is available. This corresponds to having available the distance
(depth) of each image object patch from its physical location in 3D. Our goal is to
learn the distributions of location p(xj:) and object classp(Oj:), and the mapping
of C i (f ). Here we de¯ne location x of an object as a bounding box with center
position q, height h, and aspect ratio a. We sample each image patch centered
at location l and select the scales = m(l; d). Then the feature f is extracted
from the patch (l; s). When the image patch comes from a foreground object, we
cache: 1) the information of the relative voting direction b as q¡ l

s ; 2) the relative
object-height/patch-scale ratio w as h

s ; 3) the object aspect ratio a. Then, we
use both the foreground patches (positive examples) and background patches
(negative examples) to train a random forest to obtain the mapping C i (f ).
p(OjC) is estimated by counting the frequency that patches ofO falls in the
codebook entryC. p(xjO; C; s; l) can be evaluated given the cached information
f v; w; ag as follows:

p(xjO; C; s; l) /
X

j 2 g(O;C )

±(q ¡ bj ¢s + l; h ¡ wj ¢s; a ¡ aj ) (5)

where g(O; C) is a set of patches fromO mapped to codebook entryC.

3.2 Recognition and 3D reconstruction

Recognition when depth is available. It is straightforward to use the model
when 3D information is observed during recognition. Since the uncertainty of
scale is removed, Eq.4 becomes

V(O; xjD ) /
X

j;i

p(xjO; C i (f j ); m(l j ; dj ); l j )p(OjC i (f j )) (6)

Since sj = m(l j ; dj ) is a single value at each locationj , the system can detect
objects more e±ciently by computing less features and counting less votes. More-
over, patches selected using local appearance at a wrong scale can be pruned out
to reduce hallucination of objects (Fig. 3).
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Fig. 5. A typical detection re-
sult in (a) shows object hypothe-
sis bounding box (green box) and
patches (red crosses) vote for the
hypothesis. A naive reconstruction
su®ers from quantization error (b)
and phantom objects (c). Our algo-
rithm overcomes these issues and
obtains (d)

Recognition when depth is not available. When no 3D information is
available during recognition, p(sj jl j ; dj ) becomes a uniform distribution over the
entire scale space. Since there is no closed form solution of integral over sj , we
propose to discretize the space into a ¯nite number of scalesS so that Eq. 4 can
be approximated by V(O; xjD ) /

P
j;i

P
sj 2 S p(xjO; C i (f j ); sj ; l j )p(OjC i (f j ))

Decoding 3D information. Once we obtain a detection hypothesis (x; O)
(Green box in Fig. 5(a)) corresponding to a peak in the voting spaceV , the
patches that have cast votes for a given hypothesis can be identi¯ed (Red cross
in Fig. 5(a)). Since the depth information is encoded by the scales and position
l of each image patch, we apply Eq3 in a reverse fashion to infer/decode depths
from scales. The reconstruction, however, is a®ected by a number ofissues: i)
Quantization error : The fact that scale space is discretized into a ¯nite set
of scales, implies that the depthsd that we obtained are also discretized. As
a result, we observe the reconstructed point clouds as slices of thetrue object
(See Fig. 5(b)). We propose to use the height of the object hypothesish and
the speci¯c object-height/patch-scale ratio w to recover the continuous scale
ŝ = h=w. Notice that since w is not discretized, ŝ is also not discretized. Hence,
we recover the reconstruction of an object as a continuum of 3D points (See
Fig. 5(c)). ii) Phantom objects : The strength and robustness of our voting-
based method comes from the ability to aggregate pieces of information from
di®erent training instances. As a result, the reconstruction maycontain multiple
phantom objects since image patches could resemble those coming from di®erent
training instances with slightly di®erent intrinsic scales. Notice that the phantom
objects phenomenon re°ects the uncertainty of the scale of the objectin an object
categorical model. In order to construct a unique shape of the detected object
instance, we calculate the relative object height in 3D with respectto a selected
reference instance to normalize the inferred depth. Using this method, we recover
a unique 3D shape of the detected object.

4 Evaluation

We evaluated our DEHV algorithm on several datasets. The training settings
were as follows. For each training image, we randomly sample 100 image patches
from object instances and 500 image patches from background regions. The
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Fig. 6. Object localization results are shown as precision recall curves evaluated using
PASCAL VOC protocol. (Green curve) Result using standard ISM model (baseline).
(Blue curve) Result using DEHV with no depth information during testing. (Red curve )
Result using DEHV with partial depth information during testing. Notice the cons istent
improvement of average precision (AP) compared to the baseline hough voting.

scale of the patch size from the corresponding object instance is determined by
its (known) depth (Fig. 4). At the end, 10 random trees (Sec.3.1) are trained
using the sampled foreground and background patches for each dataset. For all
experiment, we use a Hog-like feature introduced in [10]. During detection, our
method treats each discrete viewpoint as a di®erent classO.

4.1 Exp.I: System analysis on a novel 3D table-top object dataset

Due to the lack of datasets comprising both images and 3D depth maps of
set of generic object categories, we propose a new 3D table-top object category
dataset collected on a robot platform. The dataset contains three common table-
top object categories: mice, mugs, and staplers, each with 10 object instances.
We arrange these objects in two di®erent sets for the purpose of objectlocaliza-
tion and pose estimation evaluation. The object localization dataset (Table-Top-
Local) contains 200 images with the number of object ranging from 2 to 6 object
instances per image in a clutter o±ce environment. The object pose estimation
dataset (Table-Top-Pose) contains 480 images where each object instance iscap-
tured under 16 di®erent poses (8 angles and 2 heights). For both settings, each
image comes with depth information collected using a structure-light stereo cam-
era. Please see the author's project page (http://www.eecs.umich.edu/ ~sunmin)
for more information about the dataset.

We evaluate our method under 3 di®erent training and testing conditions,
which are 1) standard ISM model trained and tested without depth, 2) DEHV
trained with depth but tested without depth, and 3) DEHV trained and t ested
with depth. We show that the knowledge of 3D information helps in terms of
object localization (Fig. 6), and pose estimation (Fig.7). Moreover, we evaluate
our method's ability to infer depth from just a single 2D image. Given the
ground truth focal length of the camera, we evaluate the absolute depth error
for the inferred partial point clouds in table. 1-Left Column. Notice that our
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(c) DEHV w/ depth Fig. 7. Pose estimation results
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gories. The average accuracy
increases when more 3D in-
formation is available. And
knowing depths in both train-
ing and testing sets gives the
best performance.

errors are always lower than the baseline errors1. We also evaluate the relative
depth errors2 reported in table. 1-Right Column when the exact focal length is
unknown. Object detection examples and inferred 3D point clouds areshown in
Fig. 8.

Sparse/Baseline Sparse/Baseline

Mouse 0.0145/0.0255 0.0173/0.0308

Stapler

0.0176/0.0228 0.0201/0.0263

0.0094/0.0240 0.0114/0.0298

Abs. Depth in (m) Rel. Depth 
(known focal length) (unknown focal length)Table 1

Mug

Savarese et
al. '08 [22]

Farhadi et
al. '09 [7]

DEHV
stapler

DEHV
mouse

64.78 78.1675.0 73.5

Table 2. pose estimation performance on 3D object dataset[21]

Fig. 8. Example of object detections (Top) and inferred 3D point clouds (Bottom).
The inferred point clouds preserve the detailed structure of the objects, like the han-
dle of mug. Object contours are overlaid on top of the image to improve the re aders
understanding. Please refer to the author's project page for a better visualizati on.

4.2 Exp.II:Comparision on three challenging datasets

In order to demonstrate that DEHV generalizes well on other publicly available
datasets, we compare our results with state-of-the-art object detectors on a sub-
1 It is computed assuming each depth is equal to the median of the depths of the

inferred partial point clouds
2 kd¡ d̂k

d where d is the ground truth depth, and d̂ is the estimated depth. And d̂ is
scaled so that d and d̂ have the same median.



DEHV for joint object detection and shape recovery 11

Non-Hough Detector
recall @ 0.3/0.4 FPPI

DEHV KAS [9]

67.8/77.4

Hough Detector
recall @ 1.0 FPPI

M HT[16]DEHV

55.0

2

87.1

77.4/80.6

(a)

PMKrank[17]

74.2

ISM[13]

35.5

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False•positives per image

D
e

te
c
ti
o

n
 r

a
te

mugs(b)

 DEHV

Fig. 9. Performance on the mug category of
ETHZ shape dataset [9]. (a-Top) Performance
comparison with other pure Hough voting
methods (M 2HT) [16] and (PMK rank) [17].
(a-Bottom) Performance comparison between
state-of-the-art non-hough voting methods [9].
(b) Detection Rate vs. FPPI of DEHV.

set of object categories from the ETHZ shape dataset, 3D object dataset, and
Pascal 2007 dataset. Notice that all of these datasets contain 2D images only.
Therefore, training of DEHV is performed using the 2D images from thesepublic
available dataset and the depth maps available from the 3D table-top dataset
and our own set of 3D reconstruction of cars3.

ETHZ Shape Dataset. We test our method on the Mug category of the
ETHZ Shape dataset. It contains 48 positive images with mugs and 207 negative
images with a mixture of apple logos, bottles, gira®es, mugs, and swans. Follow-
ing the experiment setup in [9], we use 24 positive images and an equal number
of negative images for training. We further match the 24 mugs with the mugs in
3D table-top object dataset to transfer the depth maps to the matched object
instances so that we obtain augmented depth for positive training images. All
the remaining 207 images in the ETHZ Shape dataset are used for testing.

The table in Fig. 9(a)-top shows the comparison of our method with the
standard ISM and two state-of-the-art pure voting-based methods at 1.0 False-
Positive-Per-Image (FPPI). Our DEHV method (recall 83.0 at 1 FPPI) si g-
ni¯cantly outperforms Max-Margin Hough Voting (M 2HT) [ 16] (recall 55 at 1
FPPI) and pyramid match kernel ranking (PMK ranking) [ 17] (recall 74.2 at 1
FPPI). The table in Fig. 9(a)-bottom shows that our method is comparable to
state-of-the-art non-voting-based method KAS [9]. Note that these results are
not including a second stage veri¯cation step which would naturally boost up
performance. The recall vs (FPPI) curve of our method is shown in Fig. 9(b).

3D object dataset. We test our method on the mouse and stapler categories
of the 3D object dataset [21,22], where each category contains 10 object instances
observed under 8 angles, 3 heights, and 2 scales. We adapt the same experimental
settings as [21,22] with additional depth information from the ¯rst 5 instances of
the 3D table-top object dataset to train our DEHV models. The pose estimation
performance of our method is shown in table.2. It is superior than [22] and
comparable to [7] (which primarily focuses on pose estimation only).

Pascal VOC 2007 Dataset. We tested our method on the car category
of the Pascal VOC 2007 challenge dataset [6], and report the localization per-
formance. Unfortunately PASCAL does not contain depth maps. Thus, in order
to train DEHV with 3D information, we collect a 3D car dataset containing 5
car instances observed from 8 viewpoints, and use Bundler [24] to obtain its 3D

3 Notice that only depth is used from our own dataset.
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Fig. 10. Object Localization result using PAS-
CAL VOC07 dataset. The precision-recall
generated by our method (red) is com-
pared with the results of 2007 challenge [6]-
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Fig. 11. Circular histograms of 6
DOF error in degree, where 6 DOF
error is de¯ned as the angle (in de-
gree) between the ground truth and
estimated object orientation (ex: a
normalized 3D vector pointing from
the center to the front of an object.)

reconstruction. We match 254 car instances4 in the training set of Pascal 2007
dataset to the instances in 3D car dataset and associate depth maps to these
254 Pascal training images. This way the 254 positive images can be associated
to a rough depth value. Finally, both 254 positive Pascal training images and
the remaining 4250 negative images are used to train our DEHV detector. We
obtain reasonably good detection performance (Average Precision 0.218) even
though we trained with fewer positive images (Fig.10). Detection examples and
inferred objects 3D shape are shown in Fig.12.

4.3 Applications: 6 DOF pose estimation and 3D object modeling

DEHV detects object classes, estimates a rough pose, and infers a partial re-
construction of the detected object. In order to robustly recover the accurate
6 DOF pose and the complete 3D shape of the object, we propose to register
the inferred partial 3D point cloud (Fig. 1(c)) to a set of complete 3D CAD
models 5. Having estimated pose during detection allows us to highly reduce
the complexity of this registration process. A modi¯ed ICP algorithm [3] is used
for registration. Quantitative evaluation of 6 DOF pose estimation are shown in
Fig. 11. We also obtain a full 3D object model by texture mapping the 2D image
onto the 3D CAD model. Anecdotal results are reported in the 5th row of ¯gure
12.

5 Conclusion

We proposed a new detection scheme called DEHV which can successfully detect
objects, estimate their pose from either a single 2D image or a 2D image com-
4 254 cars is a subset of the 1261 positive images in the PASCAL training set. The

subset is selected if they are easy to match with the 3D car dataset.
5 The models are collected only for registration usage
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Fig. 12. Examples of the complete 3D object inference process using the testing images
from Pascal VOC07 [6], ETHZ Shape [9], and 3D object dataset [21]. This ¯gure should
be viewed in color. Row 1 Detection results (green box) overlaid with image patch
centers (red cross) which cast the votes. Row 2 Inferred 3D point clouds (red dots),
given the detection results. Row 3 3D registration results, where red indicates the
inferred partial point clouds and green indicates the visible parts of the 3D CAD
model. Row 4 3D Object modeling using the 3D CAD models and estimated 3D pose
of the objects. Notice that the supporting plane in 3D object modeling are man ually
added. Row 5 Visualizations of the estimated 6 DOF poses. (See author's project page
for 3D visualization.)

bined with depth information. Most importantly, we demonstrated that DEHV
is capable of recover the 3D shape of object categories from just one single un-
calibrated image.

Acknowledgments We acknowledge the support of NSF (Grant CNS 0931474)
and the Gigascale Systems Research Center, one of six research centersfunded under
the Focus Center Research Program (FCRP), a Semiconductor Research Corporation
Entity, and Willow Garage, Inc. for collecting the 3D table-top object category dataset.

References

1. Arie-Nachimson, M., Basri, R.: Constructing implicit 3d shape models for p ose
estimation. In: ICCV (2009)

2. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pat-
tern Recognition (1981)

3. Besl, P.J., Mckay, H.D.: A method for registration of 3-d shapes. IEEE Trans.
PAMI 14(2), 239{256 (1992)

4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human dete ction. In:
CVPR (2005)



14 Sun, Xu, Bradski, and Savarese

5. Deselaers, T., Criminisi, A., Winn, J., Agarwal, A.: Incorporating on-dema nd
stereo for real time recognition. In: CVPR (2007)

6. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A .: The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results

7. Farhadi, A., Tabrizi, M.K., Endres, I., Forsyth, D.: A latent model of discrimi native
aspect. In: ICCV (2009)

8. Fergus, R., Perona, P., Zisserman, A.: A sparse object category model for e±cient
learning and exhaustive recognition. In: CVPR (2005)

9. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour seg ments
for object detection. IEEE Trans. PAMI 30(1), 36{51 (2008)

10. Gall, J., Lempitsky, V.: Class-speci¯c hough forests for object detec tion. In: CVPR
(2009)

11. Hoeim, D., Rother, C., Winn, J.: 3d layoutcrf for multi-view object clas s recognition
and segmentation. In: CVPR (2007)

12. Huttenlocher, D.P., Ullman, S.: Recognizing solid objects by alignment with an
image. IJCV 5(2), 195{212 (1990)

13. Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmen-
tation with an implicit shape model. In: ECCV workshop on statistica l learning in
computer vision (2004)

14. Liebelt, J., Schmid, C., Schertler, K.: Viewpoint-independent object cl ass detection
using 3d feature maps. In: CVPR (2008)

15. Lowe, D.G.: Local feature view clustering for 3d object recognition. In: CVP R
(2001)

16. Maji, S., Malik, J.: Object detection using a max-margin hough tranform. In:
CVPR (2009)

17. Ommer, B., Malik, J.: Multi-scale object detection by clustering lines . In: ICCV
(2009)

18. Romea, A.C., Berenson, D., Srinivasa, S., Ferguson, D.: Object recognition and full
pose registration from a single image for robotic manipulation. In: ICRA (20 09)

19. Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D object modeling and recog-
nition using a±ne-invariant patches and multi-view spatial constraints . In: CVPR
(2003)

20. Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Close-range scene segmentation
and reconstruction of 3d point cloud maps for mobile manipulation in human
environments. In: IROS (2009)

21. Savarese, S., Fei-Fei, L.: 3D generic object categorization, localization and pose
estimation. In: ICCV (2007)

22. Savarese, S., Fei-Fei, L.: View synthesis for recognizing unseen posesof object
classes. In: ECCV (2008)

23. Schneiderman, H., Kanade, T.: A statistical approach to 3D object detectio n ap-
plied to faces and cars. In: CVPR (2000)

24. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo coll ections in
3d. In: SIGGRAPH (2006)

25. Su, H., Sun, M., Fei-Fei, L., Savarese, S.: Learning a dense multi-view representa-
tion for detection, viewpoint classi¯cation and synthesis of objec t categories. In:
ICCV (2009)

26. Thomas, A., Ferrari, V., Leibe, B., Tuytelaars, T., Van Gool, L.: Us ing multi-view
recognition and meta-data annotation to guide a robot's attention. Int. J. Rob.
Res. (2009)

27. Yan, P., Khan, D., Shah, M.: 3d model based object class detection in an arbitra ry
view. In: ICCV (2007)


