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Abstract namic programmingAs a result, such models can strike a
Human pose estimation in a static image is a challenging good balance between ef ciency and estimation accuracy.

problem in computer vision in that body part consgurations  pespite their success, tree models are prone to some
are often subject to severe deformations and occlusions.common misclassi cation errors.For example, left and
Moreover, efecient pose estimation is often a desirable re- right limbs are often misclassi ed because their appear-
quirement in many applications. The trade-off between ac- ance is typically very similar and their estimated loca-
curacy and efeciency has been explored in a large number tions tend to overlap in the image (over-counting evi-
of approaches.On the one hand, models with simple rep- dence). To overcome these types of misclassi cation er-
resentations (like tree or star models) can be efeciently ap rors, more structured models such as the loopy graphical
plied in pose estimation problemslowever, these models models (later referred as loopy model) have been proposed
are often prone to body part misclassiecation errors. On [9 20, 31, 14, 26, 2¢] (Fig. 1b). By capturing interactions
the other hand, models with rich representations (i.e.ploo  petween a large number of pairs of parts, these methods are
graphical models) are theoretically more robubyt their  effective atimproving pose estimation results at the espen
inference complexity may increase dramaticallin this  of a signi cantly increased computational co&fi[ 11]. For
work, we propose an efecient and exact inference algorithm jnstance, methods based on cluster pursuittiecome pro-
based on branch-and-bound to solve the human pose estihibitively slow when the number of states (i.e., number of
mation problem on loopy graphical modeM/e show that  part location hypothesis) is large since its time compiexit
our method is empirically much faster (abauttimes) than s proportional to the number of states to the power of the
the state-of-the-art exact inference algorith@i]. By ex-  cluster size (typically 3). Methods based on Branch-and-
tending a state-of-the-art tree modék] to a loopy graph-  Bound (BB) [L0] search are used in Bayesian networks with
ical model, we show that the estimation accuracy improves g |arge number of random variablesi], but they become
for most of the body parts (especially lower arms) on pop- extremely inef cient when the number of states becomes
ular datasets such as Buffy]land Stickmen ] datasets.  |arger (as in the human pose estimation problem). This is
Finally, our method can be used to exactly solve most of pecause the search proceeds by instantiating each state of
the inference problems on Stretchable Models] [(which every random variable sequentially so that both time and
contains a few hundreds of variables) in just a few minutes. memory usages increase dramatically when the number of
states increased.o improve ef ciency, i) greedy methods
1. Introduction are used to reduce the part location hypothesis (e.g. tselec
ing sparse interest points)4, 31, 26] and/or ii) approxi-

Estimating the pose of humans (e.g., determining bOdymate inference approaches are appld]L, 14, 26, 28],

part locations) from images and videos is a core problem
in computer vision and it is critical in many applications In this work, we propose an ef cient and exact inference
such as human computer interaction, video surveillance andalgorithm based on BB to solve the human pose estimation
gaming. Because speed is an important requirement inproblem on loopy models, where the number of part loca-
most of these applications, researchers have focused on agion hypotheses is largeOur BB algorithm is built upon
proaches that put a premium on ef ciency. Among them, our earlier BB algorithm 4] for solving MAP inference
tree-structured model$,[13, 5, 1, 15, 16, 22, 29 (Fig. 13 on general MRF. Our contribution is two-fold: i) similarly
are commonly used. A tree structure typically captures only to linear programming relaxation, a novel bound is obtained
the most informative spatial relationships (i.e., kineimat by relaxing the loopy model into a mixture of star-models;
constraints ) between pairs of parts since the location ef on ii) a special data structure (BMT) and an ef cient search
partis well constrained by the location of its connectedgpar routine (OBMS) (see Sed.2) are used to signi cantly re-
(e.g., the hand location is constrained by the arm location) duce the time complexity for calculating the bound in each
Inference in tree models can be done ef ciently using dy- branch of the BB search. We empirically show that when



Figure 1: lllustration of models. Panel
(a,b,c) show graphical representations of the
tree model, loopy model, and mixture of star
models, respectively. Panel (c) enumerates star
models with different parts (torso, head, upper-
arm, and lower-arm) as the center parts. In all
panels, every circle denotes a variable; every
blue or red edge denotes the interaction be-
(e tween two variables in the tree or loopy model,
respectively. The MAP assignments are shown
in green arrows, where each arrow indicates

(a) Tree Model (b) loopy Model (c) Mixture of Star Model  the orientation of the body part.

the number of hypotheses per part is large, our new BB al-they possess very distinctive appearance features (eeg., t
gorithm is an order of magnitude faster than state-of-the- whole human body is easier to detect than the hands).
art Cluster Pursuit (CP) method] in solving the exact A few works have been proposed to solve the MAP in-
MAP inference problemMoreover, by extending a state- ference problem exactly for loopy models using ef cient
of-the-art tree modell[f] to a loopy model, the estimation search algorithms. Tian and Sclaroff] propose an ef -
accuracy can be signi cantly improved (up%&6for lower cient BB algorithm for a tree model augmented with two ad-
arm) on Buffy [/] and Stickmen §] datasets.Finally, our ditional pair-wise relations between left-right legs. B
method can exactly solve the MAP inference problem on search is ef cient since it only takes constant time to evalu
the Stretchable Models ] (which contains a few hundreds  ate the bounds, this enabling the solution of problems with
of variables) in just a few minutes, arathieves superior  a large number of statedNotice, however, that the tight-
performance on a number of video sequences best repreness of such bound guarantees ef cient search only when
sented by the pre-trained model (see Se#). the energy originated from the additional pair-wise relasi

In the following sections, we rst describe the related is small (Fig.7 in P5]). This makes it hard for45] to solve
work in Sec2. Then, we formulate the human pose estima- a model with many pair-wise interactions. Bergtholdt et al.
tion problem as the Maximum a Posteriori (MAP) inference [3] convert the inference problem over a fully connected
problem over a Markov Random Field (MRF) in S8¢cand model into a shortest path problem and propose an ef -
introduce our BB method and the ef cient data structure in cientA search method for solving it. The main drawback
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Sec.4. Finally, we show experimental results in SBc. of the A search is that the branching factor of the search
tree equals the number of states per variable (i.e., number
2. Related Work of part location hypothesis). As a result, the method re-

Tree-models for human pose estimation have been intro-lies on a greedy procedure for pruning part hypotheses to
duced in f] and extended to improve the robustness of part ensure that the search problem is tractable. Cluster pur-
detectors], 13, 5] and the discriminative power of the pair- suit [2]] is an alternative exact inference algorithm which
wise relations [5, 13, 29, 27]. Andriluka et al. [I] show searches for higher-order constraints to tighten the gap be
that boosting classi ers can be used to detect parts very ro-tween approximated solution and optimal solution. How-
bustly, and the detections can be used by the tree models t@ver, since the time complexity of the algorithm is propor-
improve the overall pose estimation accuracy. Sapp et al.tional to the number of part hypotheses to the power of the
[15] propose to use a pair-wise feature that depends on theorder of the constraints (i.e., number of variables invdive
image appearance (e.g., color, contour, segmentatios), etc the constraints), the algorithm becomes prohibitivelyslo
to enhance the discriminative power. Yang and Ramananfor problems with a large number of part hypotheses.

[29, and Sun and Savaresg use the concept of part- . .

type (i.e., parts with speci ¢ orientation or foreshoriegj ~ 3- 1h€ Human Pose Estimation Problem

to model pair-wise relations of a pair of part-types instead A loopy model is capable of capturing many pair-wise
of a pair of parts.In this way, the pair-wise relations can interactions of parts and can be modeled as pair-wise
capture co-occurrence of parts with speci ¢ orientation or Markov Random Fields (MRFs). We de ne a MRFs model

foreshortening. over a graplG = fN ; Egwith a set of nodes (variablel)
Loopy models have been successfully employed to solveand a set of edges (pair-wise interactioBsg)s follows,

human pose estimation problemlinteractions between X X

many pairs of parts have been incorporated ©y2p, 14] f(h; )= Y(hy) + iFJ.’ (hi;hy); (1)

in order to encode information such as self-occlusion and i2N ij 2E

color similarity of symmetric parts. As a result, the prahle

of over-counting evidence is mitigated. Wang et at]jand whereh = (hy;:::;hjyj ) is a set of part hypothesés,

Zhu et al. B1] propose hierarchical models of parts across = f ;i 2Ng[f ,‘J’ ;1] 2 Egis the set of unary poten-

multiple scales such that parts at a lower level of the hierar tials ' and pair-wise potentialq’jJ . The human pose esti-
chy are grouped into parts at a higher level of the hierarchy.mation problem is equivalent to the Maximum a Posteriori
In particular, Wang et al. Z[g] show that parts at a higher (MAP) inference problem which nds the best assignment
level of hierarchy might be easier to detect in isolatiowsin ~ hMAP 2 H maximizingf (h; ). Hy denotes the joint



hypotheses spad¢; H » H nj andh; 2 Hi, where
jNj is the number of nodes in shi.

Exact MAP inference over MRFs with large induced
width is NP-hard 19. Many approximate inference al-
gorithms, such as loopy belief propagatidr’] or gener-
alized BP B(], have been proposed to obtain an ef cient

but non-optimal solution. Other approaches propose to re-

lax the model into models which can be easily solved, such
as star or tree model2], 1. We follow this intuition
and relax the model into a mixture of star-models (S&¥.
This is useful since the MAP solution of a mixture of star-
models can be obtained ef ciently in time quadratically{pro
portional to the number of state®(H 2)). Notice, however,
that the MAP solution of the relaxed model is unlikely to be
the same as the MAP solution of the original loopy model.
The key property that we prove in Sgclis that, when cer-
tain constraints (Eq3) are satis ed, the value of the MAP
solution of the relaxed model is an upper bound of the value
of the MAP solution of the original loopy model. This up-
per bound can be used by our newly proposed BB algorithm
(Sec4)to nd a MAP solution of the original loopy model.
In Sec.4, we describe the branching strategy of the newly
proposed BB algorithm, and further introduce an ef cient
Branch-Max-TreeBMT ) data structure (Fig2) and an ef-
cient Opportunistic Branch Max Search (OBMS) routine
(Algorithm 5) to reduce the average time complexity of cal-
culating the bound fron®(H ?) to O(Qlog, H), whereQ
is typically smaller than the number of statés
3.1. Mixture of Star-Models
A complex loopy MRF can be relaxed into a mixture of

star-modeld Gi;i 2 Ng. We de neG; as a star-model
consisting of node and all its neighbour®\; according
to the original graplG. In G;, the only unary potential is
t'(hi) and the pair-wise potential on edgeis ;i (h;;h;)
(Fig. 1c). The relaxed model becomes

fR(h;; “;B) = i(hi;Hn) @
i)Z(N X
= (Po+ mac g (fh) g
i2N joN g

whereB = f i (hj;hi); (i;j) 2 Egis the set of new
pair-wise potentials, and;(h;;Hy ) is the max-marginal
value overj 2 Nj in Gj. The advantage of the relaxed
model is that the MAP inference is equivalent to the MAP
inference over each star-modgl (i.e., by calculatindy, =
argmaxy, 21, i(hi;Hn ) separately for ali 2 N ), which
can be done very ef ciently using dynamic programming.
In order to relate the relaxed model to the original model,
we further enforce the following constraints féirj ) 2
E; 8hi X hj s

i (hishiy+ g (hishy) = F (hishy): 3)

Using Eq.3, we show that the function value of the relaxed
model (Eq.2) can be expressed as an upper bound of the

function value of the original model (E@) for anyh:

R u X u X
fth; %;B) = (i (hi)+ ﬁmax i (Bishi))
i2N jon; Mi2H
({'(hi)+ ji (hj;hi))
i2N j2N
= f(h; ): 4)

Consequently, fR(h ; Y;B) (for any B satisfying
Eq. 3) is an upper bound of the function value of the
MAP assignment (hMAP . ) sincefR(h ; Y;B)
f R(hMAP . u-B) f (h"MAP - ) where h

models. Ideally, the gap between the upper bound and
the value of the MAP assignment (i.é.R(h ; Y;B)!

f (h"MAP - )) measures the tightness of the bouktbw-

ever, such gap cannot be measured since the MAP assign-
ment is unknownlnstead, we propose to measure the tight-
ness of the bound by calculating the difference between the
upper bound and the lower bound. The lower bound can be

obtained in constant time as

X
LB(h) = f(h; )= i (hi)+ g (hishp)
i2N i 2E
0 1
X
= @ (h)+ i (hishi)A S (5)

i2N j2N
following the de nition ofh"MA®” and Eq.3.

There is a strong connection between our relaxed model
and Linear Programming (LP) relaxation. Globerson and
Jaakkola §] derive a rst-order Linear Programming (LP)
relaxation, which intuitively can be interpreted as a migtu
of star-models. This connection can be used to sel&ct
ef ciently. For instanceB can be computed using the MP
algorithm [B] (see more detail in our technical repozt]).

4. Inference

The MAP inference problem over a loopy model is hard
since i) the hypothesis spakky is large, ii) typical meth-
ods, such as dynamic programming, which work well on
tree-models, cannot be applied due to the complicated pair-
wise relationships. We follow the intuition that many hy-
potheses are unlikely to be the MAP assignmetence, we
propose a novel BB algorithm (Algorithm 1) which system-
atically searches for the MAP solution. At each step of the
BB algorithm, the hypothesis space which is most likely to
contain the MAP solution is branched into two subspaces,
and the “likelihood” of each subspace is measured. Hy-
pothesis subspaces are ranked according to the “likelihood
so that the hypothesis space which is most likely to con-
tain the MAP solution is further branched during the next
step. In such a way, the algorithm will avoid evaluating
hypothesis spaces that are unlikely to contain the MAP so-
lution. During the search, the upper bound of the value of
the MAP assignment is used as the “likelihood” to guide



Algorithm 1 Our Proposed Branch and Bound algorithm

: Do Prep(True)$eeAlgorithm 2).

2: SetHy as initial solution space and sepriority queue Q to empty

: Do ;UB)=GetBoundH y ) (Use Algorithm 6 to Efsciently eval-
uate Eq. 2).

4: SetGLB=LBg ) (In Eq. 5).

5: Insert(Hy ;UB; h ) into Q.

6: while truedo

7. (AN ;GUB; h ) = pop(Q) Get the branch with the global up-
per bound).

8: ifHy 6 Hy then

9: Do Prep(False) .

10:  endif

11:  SetHy = Hy.

12: ifjGUB GLBj "then

13: Returnh .

14: else

15: Do(H% ;HZ ) = branchingd y ;h ) (Branching Strategy

(algo. 3)).

16: Do (,; UBl)zeetBoundﬁé, ).

17: Do (,;UB2)=GetBoundd § ).

18: GLB =max(LB(h,),LB(h,),GLB) (Get global LB).

19: Insert(HY, ;UB1;h,) and(HZ ;UB2;h,) into Q.

20: endif

21: end while

the search. Branch-and-bound] is guaranteed to reach

Algorithm 3 Branching StrategyH & ; HZ, ) = branchingtiy ;h )

1: Input:Hy = hHj H nish =(hgirrhy).

2. SelectH; wherei =argmax iy i(h;) (SeeSec.4.1).

3: Supposéd; =[hj :::hy] (States are in a *xed order)

4: SetH! = [hj :ithpgsj+ kel HE = [hposj+kyesr 10Dk

(Split roughly in half).
SetHl = hHy
H2 H ni.
Output:H} andHZ .

1
i

5: H H ni;HZ = hH;

6:

whereh; = argmaxn,2n, ( i(hi)). Similarly, the lower
90und in Eq5is alﬁo the sum of node-wise lower bound

i(h)= )+ v, i (h;hy). We de ne NPDG
as i(h )= i(h)! “i(h ). Here, i (h;) is always non-
negative since

i(hi)

= i(hy)+ hr_nzax_ i (hyshy)

28 (0) e
f(hy)+ i (hjhi) = "(h ):(6)

J2N ()

P N :
Moreover, ;,, i(h;) =0 implies that the exact solution

the MAP solution when the most likely hypothesis space IS fognd, since by deRnition thf sum of NPDG is the gap
has zero gap between the upper and lower bound. Noticell-€+ oy i(hi)=T7(h ;5 %B)L f(h ;5 )). These

that the upper bound in Eg.satis es the zero gap require-
ment since, when the hypothesis space for each node-
tains one single part hypothesis (i.el; equals tof h;g),
fR(h; Y;B)= f(h; )accordingto Eg4. Therefore,in

properties suggest that we should select the variable with
the largest NPDG to greedily reduce the gap.

4.2. Ef cient Bound
We observed that nding the maximum value over a

the worst case, the BB search will stop when the most likely pranch of a 1D array is the most common operation while
hypothesis space contains only one hypothesis. We describending the MAP assignment in EcR. In particular, this

the branching strategy in Setland introduce the ef cient
bound calculation algorithm (Algorithm 6) in Set.2.

4.1. Branching Strategy

At each step of the BB algorithm (line 15 in Algorithm
1), the hypothesis space which is most likely to contain
the MAP solution is branched into two subspaces. The

hypothesis space is split by splitting the hypothesis space
Notice that the hypothesis space

of a selected variable.
of the variable is split geometrically since we order the

hypotheses so that geometrically nearby part hypotheses

are also nearby in the ordered list (line 3 in Algorithm
3). Inspired by Batra et al. 2] and similarly to p4], we
use a scoring function that we call Node-wise Primal Dual

operation appears when computing:

maxXq. on | i (Aj;hi) needs to be calculated for all pairs of

(J;i) 2 E and all hypotheseb; 2 H ;. Hence, the overall time
complexity isO(EH 2), whereE is the number of edges artl is
the number of states (per node). Notice that everg a constant
value.

h; =argmaxp, oy, i(hi;Hn ) needs to be calculated for all
noded 2 N . Hence, the overall time complexity@(NH ), where

N is the number of nodes arttl is the number of states (per node).
Notice that ; (hj; Hy ) is a function of the hypothesis spaééy )

in the branch (i.e., not a constant value).

Since both computations will be repeatedly used in all
branching steps, it is critical that they are implemented ef

Gap (NPDG) as a cue to select the variable for branching ciently. In the following, we propose a data structure to

(line 2 in Algorithm 3). Notice that the upper bound in
Eq. 2 is already the sum of node-wise upper boun¢h, ),

Algorithm 2 Preprocessing? rep(InitFlag )
1: for i 2N do

2: setBMT ;:Set(f i(hi): hi 2Hg).

3. if InitFlag then

4: for hj 2H; do

5: forj 2N do

6: SetBMTJ‘i (hi):Set(f ji (hj;hi): hj 2Hjg).
7: end for

8: end for

9: end if

10: end for

ef ciently nd the maximum over a branch of a 1D array.
Branch-Max-Tree (BMT). The key idea of th&8MT is

to utilize a one-time preprocessing step to speed up the
guerying operation which is supposed to be repeated multi-
ple times. Given an ArraA[1:::H], a Branch-Max-Tree
(BMT )is setup (denoted lyM T .Set@) in Fig. 2) in or-

der to ef ciently answer queries of the formaxyon A[K]
(denoted byBMT: max(H) in Fig. 2). As illustrated in
Fig. 2, all nodes keep the pointer to the maximum value of
its children nodes in thBMT . The tree is set up in time
and memory usage both linearly proportional to the size of
the array.Once the tree is set up, the maximum value of a



Node Structure

N(b) ; b=0...6 - nodes
accessed by branch inde:

N.p - Parent Pointer

N.lc - Le! Child Pointer

N.rc - Right Child Pointer

N.v - pointer to the max value

N.b - branch index

b=6 !lc rc

Queries

BMT.Max({0...3})* = N(0).v*=10
A=[10 8 -1 MT.Max((2...3}) *= N(2).v*=5
Figure 2: lllustration of the Branch-Max-TreeBM T ). The left panel
shows an example ofBMT set up from a simple Arraj with only 4 el-
ements. Notice that each node in the tree caches a pointes todx value
of its child nodes, and the max value is shown for illustratrposes. The
top-right panel shows the data structure of a node used &irt@BM T .
The bottom-right panel shows that o8& T is built, each branch max
query can be converted to a constant time look up from theespanding
node. Notice that the superscriptienotes pointer dereferencing.

branchH can be simply looked up (in constant time) from
a node inBMT , where all its succeeding leaf-nodes fully
coverH. The requirement of usingMT s that the values
of the arrayA must be xed.

Now we show the computation afaxg 5, ji HD)
can be sped up by using BMT. Sincg (ﬁ,— ; hy) for a spe-
cic hj is a constant 1D arraynaxy oy i (ﬁj ;hi) can
be obtained inO(1) time, once theBMT (denoted by
BMT i (hi)) is set up at the beginning of the BB algorithm
in O(H) time. Hence, in line 1 of Algorithm 1, a set of
pair-wiseBMTs (i.e.fBMT;j (hi);hi 2 Hi;(j;i) 2 EQ)
are set up ir0O(EH ?) total time to speed up the query time
computation, wher& is the number of edges in the CRF.
Notice that, in our earlier work[4], the computation is cast
into a Range Maximum Query (RMQ) probler [ In this

work, a simpler BMT data structure is used since the ranges

(b)Child Branct
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Sorted Hypotheses  Ordel Sorted Hypotheses
Figure 3:Motivation for the Opportunistic Branch Max Search (OBMS).
Panel (a) shows the sorted (h;) value (y axis) for each hypothesis (x-
axis) of the parent branch, where colors from blue to redesgt the
order from large to small values. Panel (b) shows the sortéld; ) value
(y axis) for each hypothesis (x-axis) of the child brancherehthe same
color-code according to the order obtained in its parentdiras used. We
clearly see that the top few hypotheses are mostly all bltes implies
that the top few hypotheses are very similar across the parah child
branches.

mizer of A. This can be done by checking whether the con-
dition A[hY ] AVY[h]is satised forallh 2 Hn hY . If

the condition is not satis ed, we can update the upper bound
AY[hY 1= A[hY ] and test the maximizer of the updated
AY iteratively until the condition is satis ed. Using this
opportunistic strategy, we avoid evaluating all elements i
H which costO(jHj).

In the OBMS routine, it is critical to obtaim¥ =
arg maxn2y AY[h] and updatedV [h] very ef ciently. At
the rst glance, a priority queue seems to be a good data
structure. This can be set up @(jHj) time, but ef -
ciently queried inO(1) time and updated i©(log, jHj )
time. However, since we need to query fbF =
arg max,2y AY [h] multiple times in the BB search for dif-
ferent branchesl, a priority queue needs to be set up from
scratch for each branch. Therefore, no speed-up is achieved

(branches) are prede ned according to the branching strat-Ef cient BMT Update. We propose to set up BMT

egy in Algorithm 3. Most importantly, the second com-

putation Grg max,, 21, i(hi; Hn)) cannot be handled by
RMQ, but can be handled by BMT as described below.
WhenA has been changed, tlBMT needs to be re-

set from scratch so that no speed-up is achieved. Hence

computingarg max, 21 ; i (hi; Hn ') cannot be sped up by
directly using theBMT . However, we observed that the
value of ;(h;; Hy ) for different hypotheses are distributed
in a large range (Fig3(a)). Most importantly, if we com-

pare i(hi;Hy) in one branch with its child branch, we

nd that the maximal few hypotheses do not change muc
(Fig. 3(b)). This suggest that the maximal few hypotheses
of one branch are likely to be the maximal few hypothe-
ses of its child branch as well. Intuitively, we only need

to nd the maximum hypothesis among these few hypothe-
ses. Therefore, we propose an Opportunistic Branch Max 2:

Search (OBMS) routine to speed up the computation.
Opportunistic Branch Max Search (OBMS). Instead of
only knowing the ArrayA[l:::H], now we assume that
its element-wise upper bourdV[1:::H] (i.e., A[h]
AY[h]; 8h)is also given. The opportunistic strategy to nd
maxn2n A[h] for any branchH is to test if the maximizer
(i.e.,hY = argmaxnoy AY[N]) of AY is also the maxi-

for AY[h]l. A bottom-up procedure (Algorithm 4) ef-
ciently updates the nodes iIBMT along the path
from the leaf-node corresponding to the updated element
to the node corresponding to the branch (denoted by
BMT .updat¢H; hV ;A[hY ])). The time complexity is
O(log, jHj) (the same as the priority queue) since the up-
date follows a single path in tBMT . The sameBMT

can be used foany query with brancH which is the sub-

set ofH. However, for other queries, tiBM T needs to be
reset from scratch with complexi®(jHj) (line 9 in Algo-

h rithm 1).

Algorithm 4
BMT .updated ,h,v)

1: Input: H speciees the branch to be updatédspecices the leaf-noc
where the update startg;is the new updated value.
Sethr = b(H) to be the branch index for the whole brandh; =
b(f hg) to be the branch index of the leaf-node; the working r
Nw = N (b):p to be the parent of the leaf-node.
: UpdateN (b):v = v.
while Ny :b & by do
if Nw:lccv >N w:rc:iv  then
UpdateNy :v = Ny:lc:v .
else
UpdateNy :v = Ny:rciv .
end if
SetNw = Nw:p.
: end while

Efscient Update Procedure for BMT :

P00 ~ND O AW




Algorithm 5 Opportunistic Branch Ma
Searchth ;v) = OBMSH y i)
1: Input:Hy specises the branch,specify the node index.
2: Seth =NULL .
3: while truedo
4:  Seth = BMT;:max(H;) .
5. ifh 6 fithen
6: Setv = U(f).
7 forj 2N do
8: Setv = v+ BMT ji (A): max(Hj) .
9: end for
10: SeBMT ; :update(H;; fi;v) .
11 h =f
12:  else
13: break.
14:  endif
15: end while
16: Returnv.
Now we show that computation of
argmaxn, 21, i(hi;Hn) can be sped up by using

OBMS. By careful inspection, we found that(h;;Hy )
is the upper bound of; (h;; ¥y ) whenHy is a subset of
Hy . This is because

max (hyhi) - max i (h s hi); i Hj: (@
is true for allh; and (j;i) 2 E. Given such a prop-
erty, we set up aBMT; for i(hi;Hn) (in the pre-
processing step) and use OBMS to ef ciently calculate
argmax, , g, i(hi; Hy ) foralli 2 N . The routine takes
O(NQlog, Hi)  O(NQ log, H) instead ofO(N H;)

O(NH ), whereQ is the number of trials in the OBMS and
N is the number of nodes in the CRF. Typically<< H

Buffy Stickmen
Parts | OursF | Ours13| Ours7| CPS | OursF | CPS
Head | 99.15 99.15 99.15 | 99.15| 99.44 | 99.17
Torso | 99.57 99.57 99.57 | 99.57 | 99.72 | 99.72
RUA 95.30 93.59 93.16 | 95.30 | 82.50 | 82.22
LUA 92.31 92.31 92.31 | 91.88 | 80.28 | 81.67
RLA 63.25 59.83 60.26 | 59.83 | 56.94 | 54.44
LLA 64.53 62.39 61.97 | 59.83 | 53.89 | 51.94

Table 1: Pose estimation accuracy of different variants of our medel
compared to CPS on Buffy and PASCAL Stickmen datasets. Q@sIfS

13, and Ours 7 denote our fully connected model, the modél ¥8tpair-
wise relationships (full model excluding 2 relationshigsymmetric arm
pairs), and the model with 7 pair-wise relationships (treedet with 2
additional symmetric arm relationships), respectively.

we empirically demonstrate that our method is faster than
CP method wheHl is large (a few hundred), which implies
BN <CPH o1,

5. Experiments

We evaluated performances and computational ef -
ciency of our algorithm applied on loopy models and com-
pare it against: i) existing tree-based models; 2) state-of
the-artinference algorithms. The rst comparison is agtin
the state-of-the-art tree model introduced by][ In order
to guarantee a fair comparison withd] we extend the cas-
cade pictorial structure (CPS) ] into a loopy model by
capturing pair-wise part relationships other than the kine
matic constraints.Notice that the same features, types of
classi ers, and learning procedures are used to build and
train the loopy model. We show that: i) the loopy model
achieves better accuracy than the baseline tree model, ii)
our proposed BB approach on the loopy model is much
faster (74 times) than another state-of-the-art exact-infe

since we observed that the order of the top few hypothesegnce algorithmZ1]. Furthermore, we show our novel BB

are not changing much (Fig(b)). The OBMS routine is
shown in Algorithm 5.

algorithm can ef ciently and exactly solve problems even
with hundreds of variables. This analysis was done by using

In summary, we propose to pre-process the data structuréhe Stretchable Models (SM).{] to estimate human body

before BB search i®(EH 2+ NH ) time to reduce the time
to calculate the bound fro®(EH 2) to O(NQ log, H)
when a sub-branch is explored a@¢N H ) otherwise No-
tice that the overall time complexity of the algorithm also
depends on the number of BB iteratioBs Hence, the
overall average time complexity becom@&BNH ) (when
only BMT is used) andD(B1NQlog,H + BoNH) <
O(BNH ) (when bothBMT and OBMS are used), where
B, is the number of times BMT needs to be re-initialized
(line 9 of Algorithm 1) andB; + B, = B. The time com-
plexity of Cluster Pursuit (CP) metho@]] is O(CPH?9),
whereP is the number of message passing iterationis,
the size of the clusters pursued, &dis the number of clus-
ters with sizeq. Therefore, our BB algorithm is faster than
CP whenBN < CPH 9 ! s satis ed. In our experiment,

Algorithm 6 Get Bounds:If ; UB)=GetBoundf y )

setUB =0.
Deenteh = (hy;:::;
:fori 2N do
Get(h; ;vi) = OBMSH y ,i).
SetUB = UB + v;.
end for
: Return(h ;UB).

hoo).

NoarwNE

joint locations across multiple frames (up to 30 fram¥¥e3.
conducted all the experiments on a 64-bit 16-Core Intel(R)
Xeon(R) 2.40GHz CPU with 48GB RAM, the algorithms
are implemented in single thread C++, and the time reported
is in cpu-time (via the c++ clock() function).

5.1. Extended CPS Model

CPS is an upper body tree model with 6 articulated parts
(i.e., head, torso, left/right-upper-arms, and left/titgwer-
arms) which are parametrized by the locatigny) and ori-
entation () of the part (i.e.,h = (x;y; )). The model
achieves impressive performances by capturing more so-
phisticated pair-wise relationships than just geometic r
lationships using segmentation, contour, shape, and color
features. In the CPS model, 5 decision-tree-based classi-
ers are trained to predict the strength of pair-wise relati
ships given the features. On top of the existing 5 classj ers
we further train 10 additional decision-tree-based classi
and extend the model into a fully connected pair-wise model
(i.e., aloopy model). Since now all the classi ers are teain
independently, we treat the responses of the classi ers as
the features and assume all potentials are linearly related
to a set of model parameters such that the overall model is



Figure 4: Scatter plot for the time
comparison between the CP method
(y axis) and our methods (x axis) on
the Buffy dataset. Green indicates re-
sults of our approach without OBMS
and red indicates results of our full
BB approach. The two percentages
on top of gure indicate how many
times our two approaches are faster
104 than the CP respectively.
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linearly related to the parameters as:

X
i(hi;1)+

ij 2E

X
f(hw;l)= wy wi i (hishisl);

i2N

(8)

rameters, i(hi;l1) and j (hi;h;;1) are the unary and
pair-wise features, respectively, ang the image informa-
tion. For conciseness, we de figh;w;1)= w'™ (h;l),
wherew; (:), andh are in the concatenated vector forms.
The model is learned using the max-margin formulation
(see technical repor?f]).

We conduct experiment on both Buffy][and PASCAL
Stickmen p] dataset following the same experiment setup
in [16]. The pose estimation performance is shown in Per-
centage of Correct Parts (PCP) for each part in Tablde

report the CPS performance reproduced by the public avail-

able code released by Sapp et @l5][ We also explore the
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Figure 6: Quantitative results on three sequences in the VideoFdse2.
testset that are best represented by the pre-trained matelpredicted
joint location is correct if its distance between the grotmuth location is
smaller than the speci ed pixel error threshold (x-axisi. the rst col-
umn, both methods (our method and Stretchable Models (SiWy)detect
half of the elbows. In the second sequence (Center), ouradetbhieves
almost consistently 10% better wrist accuracy than SM does. In the last
sequence (Right), our method obtains better accuracy wieepixel error
threshold is small for both elbow and wrist.

640MB) than the CP method (on average 7GB).

We also explore the trade-off between the pose estima-
tion accuracy and inference time by allowing our method
to stop early (increasingin line 12 of Algorithm 1). As
shown in Fig.5, when we allow approximate inference to
run on average fat:5 sec, the algorithm already reaches the
same performance as the exact inference algorithm which
takes4:5 sec on average. Typical results of both the loopy
model and the original tree model{] on both Buffy and
Stickmen datasets are shown in Fig.

5.2. Stretchable Model (SM)

Sapp et al. 8] propose the Stretchable Model (SM)
which models 6 body joint locations in each frame and cap-

effect of the connectivity of the model by training two sub- tures interactions within frames as well as across consecu-
models with 13 and 7 pair-wise interactions on the Buffy tive frames. Since no existing methods can solve exact in-
dataset. Our fully connected model (“Ours F” in TaliJe  ference ef ciently on such a large loopy modelZ00 vari-
outperforms the sub-models and CPS for most parts on bothables and a few hundred states per variable), they propose

datasets. Moreover, our method achieves an average PChkiultiple inference techniques to solve the joint estinmatio

of 85:7% which is signi cantly better than another fully-
connected model?[] (67:6%) and on par with the state-
of-the-art method49] (89:1%) on the Buffy datasetWe
also compare the time ef ciency of different variants of our

problem: A) exact inference on relaxed models, B) approx-
imate inference on a full model (dual decomposition). Their
experimental results on VideoPose2.0 datasgtghow that
(A) is both more ef cient and accurate than (B).this ex-

methods against a state-of-the-art Cluster Pursuit (CP) ex periment, we rst use message passing to select the best

act inference methodNotice that we calculate the bound
in Eg.2 by setting = 0:5 in this experiment, since it is
more costly to do message passing to search farthe be-
ginning. Our method takes 0.28 hours in total to recognize
poses in the whole Buffy dataset which conta2#9 test-

in order to avoid having much looser upper bound. We
show that our BB algorithm can be directly applied to ex-
actly infer the MAP solution over their pre-trained model.
13 out of 18 test sequences are solvathin 20 minutes
(on averagé:546 minutes). On the other hand, a dual de-

ing images. This is 74 times faster than CP method (20.83compaosition approximate inference algorithéh ¢an only

hours). A scatter plot in Figl shows the time comparison
for each example. It shows that our method with OBMS
(red dots in Fig4) is faster than our method without OBMS
(green dots in Fig4) (on average:5 times faster). More-
over, we identify two groups of examples. The group on

solve 4 out of 18 problem#&4oreover, CP method can only
solve the same 4 problems even within one hdnterest-
ingly, although our method solves MAP estimation exactly,
our method achieves similar elbow prediction accuracy but
5% lower wrist prediction accuracy. Our result and Sapp

the top is a set of hard examples since the CP method iset al.'s conclusion suggest that the pre-trained modelts no
required to search for more complex constraints in order to representing the video sequences well. Indeed, we discover
solve these problems. We observe that our method is fastethat the learned model typically assigns much lower values
than CP in 88% of the images in the dataset. Moreover,to the ground truth assignments than it does with the values
our BB algorithm requires less memory usage (on averageof the MAP assignments (on averag@% smaller). This
means that the model often does not agree with the ground
truth assignments. For example, in the rst test sequence,
the values of the MAP, Sapp et al.’s approximate inference,
and the ground truth assignments @655 17901 9257,

@
&

Figure 5: Trade-off
between accuracy (y
axis in PCP) and ef -
ciency (x axis in time)
of lower arms.
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Figure 7 Typical results from Buffy, Pascal Stickmen, and VideoRose 1
datasets shown in Stickmen representation from top to motrespec-
tively. In each set of results, we show our result on the ledt the Sapp et
al.’s result on the right.

El

respectively. The value of the ground truth assignment is (10!
closer to the value of Sapp et al.'s approximate inference[ll]
assignment than to the value of the MAP assignment. We
follow this observation and select the top 3 sequences whergi2]
the value of the ground truth assignment is closer to value

of the MAP assignment with respect to the absolute differ- [13]
ence between the values of the ground truth and Sapp e[
al.'s approximate inference assignments. In these cases, e
act inference obtained by our method achieves comparable
or superior accuracy (Fig). Typical estimated body joint  [15]
locations are shown in Fig. This suggests that a better set
of model parameters must be learned to fully demonstrate
the power of the loopy model.

6. Conclusion

We have shown that our ef cient and exact inference al-
gorithm is74 times faster than the state-of-the-art exact in- [19]
ference algorithm{1]. This enables the possibility of learn-
ing and applying loopy models to solve the pose estimation [20]
problem from a single image. We have shown that this does,y;
yield superior results in estimating body parts (e.g., 5% im
provement for lower arm over a state-of-the-art method).
We further show that our algorithm is general enough to (22]
solve problems with both a large number of variables ( (23]
200) and hundreds of states per variable in just a few min-
utes. From the results of the stretchable model experiment,
we believe that learning parameters of complex models to[24]
achieve accurate performance while maintaining inference
ef ciency is an interesting future research direction.
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