
An Ef•cient Branch-and-Bound Algorithm for Optimal Human P ose Estimation

Min Sun Murali Telaprolu Honglak Lee Silvio Savarese
Department of EECS, University of Michigan, Ann Arbor, MI 48109

Abstract
Human pose estimation in a static image is a challenging

problem in computer vision in that body part con•gurations
are often subject to severe deformations and occlusions.
Moreover, ef•cient pose estimation is often a desirable re-
quirement in many applications. The trade-off between ac-
curacy and ef•ciency has been explored in a large number
of approaches.On the one hand, models with simple rep-
resentations (like tree or star models) can be ef•ciently ap-
plied in pose estimation problems.However, these models
are often prone to body part misclassi•cation errors. On
the other hand, models with rich representations (i.e., loopy
graphical models) are theoretically more robust,but their
inference complexity may increase dramatically.In this
work, we propose an ef•cient and exact inference algorithm
based on branch-and-bound to solve the human pose esti-
mation problem on loopy graphical models.We show that
our method is empirically much faster (about74times) than
the state-of-the-art exact inference algorithm [21]. By ex-
tending a state-of-the-art tree model [16] to a loopy graph-
ical model, we show that the estimation accuracy improves
for most of the body parts (especially lower arms) on pop-
ular datasets such as Buffy [7] and Stickmen [5] datasets.
Finally, our method can be used to exactly solve most of
the inference problems on Stretchable Models [18] (which
contains a few hundreds of variables) in just a few minutes.

1. Introduction
Estimating the pose of humans (e.g., determining body

part locations) from images and videos is a core problem
in computer vision and it is critical in many applications
such as human computer interaction, video surveillance and
gaming. Because speed is an important requirement in
most of these applications, researchers have focused on ap-
proaches that put a premium on ef ciency. Among them,
tree-structured models [6, 13, 5, 1, 15, 16, 22, 29] (Fig. 1a)
are commonly used. A tree structure typically captures only
the most informative spatial relationships (i.e., kinematic
constraints) between pairs of parts since the location of one
part is well constrained by the location of its connected parts
(e.g., the hand location is constrained by the arm location).
Inference in tree models can be done ef ciently using dy-

namic programming.As a result, such models can strike a
good balance between ef ciency and estimation accuracy.

Despite their success, tree models are prone to some
common misclassi cation errors.For example, left and
right limbs are often misclassi ed because their appear-
ance is typically very similar and their estimated loca-
tions tend to overlap in the image (over-counting evi-
dence). To overcome these types of misclassi cation er-
rors, more structured models such as the loopy graphical
models (later referred as loopy model) have been proposed
[9, 20, 31, 14, 26, 28] (Fig. 1b). By capturing interactions
between a large number of pairs of parts, these methods are
effective at improving pose estimation results at the expense
of a signi cantly increased computational cost [21, 11]. For
instance, methods based on cluster pursuit [21] become pro-
hibitively slow when the number of states (i.e., number of
part location hypothesis) is large since its time complexity
is proportional to the number of states to the power of the
cluster size (typically� 3). Methods based on Branch-and-
Bound (BB) [10] search are used in Bayesian networks with
a large number of random variables [11], but they become
extremely inef cient when the number of states becomes
larger (as in the human pose estimation problem). This is
because the search proceeds by instantiating each state of
every random variable sequentially so that both time and
memory usages increase dramatically when the number of
states increases.To improve ef ciency, i) greedy methods
are used to reduce the part location hypothesis (e.g., select-
ing sparse interest points) [14, 31, 26] and/or ii) approxi-
mate inference approaches are applied [9, 31, 14, 26, 28].

In this work, we propose an ef cient and exact inference
algorithm based on BB to solve the human pose estimation
problem on loopy models, where the number of part loca-
tion hypotheses is large.Our BB algorithm is built upon
our earlier BB algorithm [24] for solving MAP inference
on general MRF. Our contribution is two-fold: i) similarly
to linear programming relaxation, a novel bound is obtained
by relaxing the loopy model into a mixture of star-models;
ii) a special data structure (BMT) and an ef cient search
routine (OBMS) (see Sec.4.2) are used to signi cantly re-
duce the time complexity for calculating the bound in each
branch of the BB search. We empirically show that when

1

(a) Tree Model

Inferred State

Variables

Tree Edges

Loopy Edges

•

• u

p

(b) loopy Model

•u

•
5„5Ÿ5¢5£5Ÿ 5x5•5‘5”

5…5 5 5•5¢
5q5¢5•

5|5Ÿ5§5•5¢
5q5¢5•

(c) Mixture of Star Model

Figure 1: Illustration of models. Panel
(a,b,c) show graphical representations of the
tree model, loopy model, and mixture of star
models, respectively. Panel (c) enumerates star
models with different parts (torso, head, upper-
arm, and lower-arm) as the center parts. In all
panels, every circle denotes a variable; every
blue or red edge denotes the interaction be-
tween two variables in the tree or loopy model,
respectively. The MAP assignments are shown
in green arrows, where each arrow indicates
the orientation of the body part.

the number of hypotheses per part is large, our new BB al-
gorithm is an order of magnitude faster than state-of-the-
art Cluster Pursuit (CP) method [21] in solving the exact
MAP inference problem.Moreover, by extending a state-
of-the-art tree model [16] to a loopy model, the estimation
accuracy can be signi cantly improved (up to5%for lower
arm) on Buffy [7] and Stickmen [5] datasets.Finally, our
method can exactly solve the MAP inference problem on
the Stretchable Models [18] (which contains a few hundreds
of variables) in just a few minutes, andachieves superior
performance on a number of video sequences best repre-
sented by the pre-trained model (see Sec.5.2).

In the following sections, we rst describe the related
work in Sec.2. Then, we formulate the human pose estima-
tion problem as the Maximum a Posteriori (MAP) inference
problem over a Markov Random Field (MRF) in Sec.3, and
introduce our BB method and the ef cient data structure in
Sec.4. Finally, we show experimental results in Sec.5.

2. Related Work
Tree-models for human pose estimation have been intro-

duced in [6] and extended to improve the robustness of part
detectors [1, 13, 5] and the discriminative power of the pair-
wise relations [15, 13, 29, 22]. Andriluka et al. [1] show
that boosting classi ers can be used to detect parts very ro-
bustly, and the detections can be used by the tree models to
improve the overall pose estimation accuracy. Sapp et al.
[15] propose to use a pair-wise feature that depends on the
image appearance (e.g., color, contour, segmentation, etc.)
to enhance the discriminative power. Yang and Ramanan
[29], and Sun and Savarese [22] use the concept of part-
type (i.e., parts with speci c orientation or foreshortening)
to model pair-wise relations of a pair of part-types instead
of a pair of parts.In this way, the pair-wise relations can
capture co-occurrence of parts with speci c orientation or
foreshortening.

Loopy models have been successfully employed to solve
human pose estimation problem.Interactions between
many pairs of parts have been incorporated by [9, 26, 14]
in order to encode information such as self-occlusion and
color similarity of symmetric parts. As a result, the problem
of over-counting evidence is mitigated. Wang et al. [28] and
Zhu et al. [31] propose hierarchical models of parts across
multiple scales such that parts at a lower level of the hierar-
chy are grouped into parts at a higher level of the hierarchy.
In particular, Wang et al. [28] show that parts at a higher
level of hierarchy might be easier to detect in isolation since

they possess very distinctive appearance features (e.g., the
whole human body is easier to detect than the hands).

A few works have been proposed to solve the MAP in-
ference problem exactly for loopy models using ef cient
search algorithms. Tian and Sclaroff [25] propose an ef -
cient BB algorithm for a tree model augmented with two ad-
ditional pair-wise relations between left-right legs. TheBB
search is ef cient since it only takes constant time to evalu-
ate the bounds, this enabling the solution of problems with
a large number of states.Notice, however, that the tight-
ness of such bound guarantees ef cient search only when
the energy originated from the additional pair-wise relations
is small (Fig.7 in [25]). This makes it hard for [25] to solve
a model with many pair-wise interactions. Bergtholdt et al.
[3] convert the inference problem over a fully connected
model into a shortest path problem and propose an ef -
cientA � search method for solving it. The main drawback
of the A � search is that the branching factor of the search
tree equals the number of states per variable (i.e., number
of part location hypothesis). As a result, the method re-
lies on a greedy procedure for pruning part hypotheses to
ensure that the search problem is tractable. Cluster pur-
suit [21] is an alternative exact inference algorithm which
searches for higher-order constraints to tighten the gap be-
tween approximated solution and optimal solution. How-
ever, since the time complexity of the algorithm is propor-
tional to the number of part hypotheses to the power of the
order of the constraints (i.e., number of variables involved in
the constraints), the algorithm becomes prohibitively slow
for problems with a large number of part hypotheses.

3. The Human Pose Estimation Problem
A loopy model is capable of capturing many pair-wise

interactions of parts and can be modeled as pair-wise
Markov Random Fields (MRFs). We de ne a MRFs model
over a graphG = fN ; Egwith a set of nodes (variables)N
and a set of edges (pair-wise interactions)E as follows,

f (h; �) =
X

i 2N

� u
i (hi) +

X

ij 2E

� p
ij (hi ; hj) ; (1)

whereh = (h1; : : : ; hjN j) is a set of part hypotheseshi ,
� = f � u

i ; i 2 N g [f � p
ij ; ij 2 Eg is the set of unary poten-

tials � u
i and pair-wise potentials� p

ij . The human pose esti-
mation problem is equivalent to the Maximum a Posteriori
(MAP) inference problem which nds the best assignment
hMAP 2 H N maximizingf (h; �). H N denotes the joint

hypotheses spaceH 1 � H 2 � � � � H jN j andhi 2 H i , where
jN j is the number of nodes in setN .

Exact MAP inference over MRFs with large induced
width is NP-hard [19]. Many approximate inference al-
gorithms, such as loopy belief propagation [12] or gener-
alized BP [30], have been proposed to obtain an ef cient
but non-optimal solution. Other approaches propose to re-
lax the model into models which can be easily solved, such
as star or tree models [27, 18]. We follow this intuition
and relax the model into a mixture of star-models (Sec3.1).
This is useful since the MAP solution of a mixture of star-
models can be obtained ef ciently in time quadratically pro-
portional to the number of states (O(H 2)). Notice, however,
that the MAP solution of the relaxed model is unlikely to be
the same as the MAP solution of the original loopy model.
The key property that we prove in Sec3.1is that, when cer-
tain constraints (Eq.3) are satis ed, the value of the MAP
solution of the relaxed model is an upper bound of the value
of the MAP solution of the original loopy model. This up-
per bound can be used by our newly proposed BB algorithm
(Sec.4) to nd a MAP solution of the original loopy model.
In Sec.4, we describe the branching strategy of the newly
proposed BB algorithm, and further introduce an ef cient
Branch-Max-Tree (BMT) data structure (Fig.2) and an ef-
 cient Opportunistic Branch Max Search (OBMS) routine
(Algorithm 5) to reduce the average time complexity of cal-
culating the bound fromO(H 2) to O(Q log2 H), whereQ
is typically smaller than the number of statesH .
3.1. Mixture of Star-Models

A complex loopy MRF can be relaxed into a mixture of
star-modelsf Gi ; i 2 N g . We de ne Gi as a star-model
consisting of nodei and all its neighboursN i according
to the original graphG. In Gi , the only unary potential is
� u

i (hi) and the pair-wise potential on edgeji is � ji (hj ; hi)
(Fig. 1c). The relaxed model becomes

f R (h; ; � u ; B) =
X

i 2N

� i (hi ; H N) (2)

=
X

i 2N

(� u
i (hi) +

X

j 2N i

max
ĥ j 2H j

� ji (ĥj ; hi)) ;

whereB = f � ji (hj ; hi); (i; j) 2 Eg is the set of new
pair-wise potentials, and� i (hi ; H N) is the max-marginal
value overj 2 N i in Gi . The advantage of the relaxed
model is that the MAP inference is equivalent to the MAP
inference over each star-modelGi (i.e., by calculatingh�

i =
arg maxh i 2H i � i (hi ; H N) separately for alli 2 N), which
can be done very ef ciently using dynamic programming.

In order to relate the relaxed model to the original model,
we further enforce the following constraints for(i; j) 2
E; 8hi ; hj ,

� ji (hj ; hi) + � ij (hi ; hj) = � p
ij (hi ; hj) : (3)

Using Eq.3, we show that the function value of the relaxed
model (Eq.2) can be expressed as an upper bound of the

function value of the original model (Eq.1) for anyh:

f R (h; � u ; B) =
X

i 2N

(� u
i (hi) +

X

j 2N i

max
ĥ j 2H j

� ji (ĥj ; hi))

�
X

i 2N

(� u
i (hi) +

X

j 2N i

� ji (hj ; hi))

= f (h; �) : (4)

Consequently, f R (h � ; � u ; B) (for any B satisfying
Eq. 3) is an upper bound of the function value of the
MAP assignmentf (hMAP ; �) since f R (h � ; � u ; B) �
f R (hMAP ; � u ; B) � f (hMAP ; �) where h � =
(h�

1; : : : ; h�
jN j) is a MAP assignment of the mixture of star-

models. Ideally, the gap between the upper bound and
the value of the MAP assignment (i.e.,f R (h � ; � u ; B) !
f (hMAP ; �)) measures the tightness of the bound.How-
ever, such gap cannot be measured since the MAP assign-
ment is unknown.Instead, we propose to measure the tight-
ness of the bound by calculating the difference between the
upper bound and the lower bound. The lower bound can be
obtained in constant time as

LB (h �) = f (h � ; �) =
X

i 2N

� u
i (h�

i) +
X

ij 2E

� p
ij (h�

i ; h�
j)

=
X

i 2N

0

@� u
i (h�

i) +
X

j 2N i

� ji (h�
j ; h�

i)

1

A ; (5)

following the de nition ofhMAP and Eq.3.
There is a strong connection between our relaxed model

and Linear Programming (LP) relaxation. Globerson and
Jaakkola [8] derive a rst-order Linear Programming (LP)
relaxation, which intuitively can be interpreted as a mixture
of star-models.This connection can be used to selectB
ef ciently. For instance,B can be computed using the MP
algorithm [8] (see more detail in our technical report [23]).

4. Inference
The MAP inference problem over a loopy model is hard

since i) the hypothesis spaceH N is large, ii) typical meth-
ods, such as dynamic programming, which work well on
tree-models, cannot be applied due to the complicated pair-
wise relationships. We follow the intuition that many hy-
potheses are unlikely to be the MAP assignment.Hence, we
propose a novel BB algorithm (Algorithm 1) which system-
atically searches for the MAP solution. At each step of the
BB algorithm, the hypothesis space which is most likely to
contain the MAP solution is branched into two subspaces,
and the “likelihood” of each subspace is measured. Hy-
pothesis subspaces are ranked according to the “likelihood”
so that the hypothesis space which is most likely to con-
tain the MAP solution is further branched during the next
step. In such a way, the algorithm will avoid evaluating
hypothesis spaces that are unlikely to contain the MAP so-
lution. During the search, the upper bound of the value of
the MAP assignment is used as the “likelihood” to guide

Algorithm 1 Our Proposed Branch and Bound algorithm

1: Do Prep(True) (SeeAlgorithm 2).
2: SetH N as initial solution space and seta priority queue Q to empty.
3: Do (h � ; UB)=GetBound(H N) (Use Algorithm 6 to Ef•ciently eval-

uate Eq.2).
4: Set GLB = LB(h �) (In Eq. 5).
5: Insert(H N ; UB; h �) into Q.
6: while truedo
7: (Ĥ N ; GUB; h �) = pop(Q) (Get the branch with the global up-

per bound).
8: if Ĥ N 6� H N then
9: Do Prep(False) .

10: end if
11: SetH N = Ĥ N .
12: if jGUB GLB j � " then
13: Returnh � .
14: else
15: Do (H 1

N ; H 2
N) = branching(H N ; h �) (Branching Strategy

(algo.3)).
16: Do (h �

1 ; UB 1)=GetBound(H 1
N).

17: Do (h �
2 ; UB 2)=GetBound(H 2

N).
18: GLB =max(LB(h �

1),LB(h �
2),GLB) (Get global LB).

19: Insert(H 1
N ; UB 1 ; h �

1) and(H 2
N ; UB 2 ; h �

2) into Q.
20: end if
21: end while

the search. Branch-and-bound [10] is guaranteed to reach
the MAP solution when the most likely hypothesis space
has zero gap between the upper and lower bound. Notice
that the upper bound in Eq.2 satis es the zero gap require-
ment since, when the hypothesis space for each nodei con-
tains one single part hypothesis (i.e.,H i equals tof hi g),
f R (h; � u ; B) = f (h; �) according to Eq.4. Therefore, in
the worst case, the BB search will stop when the most likely
hypothesis space contains only one hypothesis. We describe
the branching strategy in Sec.4.1and introduce the ef cient
bound calculation algorithm (Algorithm 6) in Sec.4.2.

4.1. Branching Strategy
At each step of the BB algorithm (line 15 in Algorithm

1), the hypothesis space which is most likely to contain
the MAP solution is branched into two subspaces. The
hypothesis space is split by splitting the hypothesis space
of a selected variable. Notice that the hypothesis space
of the variable is split geometrically since we order the
hypotheses so that geometrically nearby part hypotheses
are also nearby in the ordered list (line 3 in Algorithm
3). Inspired by Batra et al. [2] and similarly to [24], we
use a scoring function that we call Node-wise Primal Dual
Gap (NPDG) as a cue to select the variable for branching
(line 2 in Algorithm 3). Notice that the upper bound in
Eq.2 is already the sum of node-wise upper bound� i (h�

i),

Algorithm 2 Preprocessing:P rep(InitF lag)

1: for i 2 N do

2: setBMT i :Set(f � i (h i) : h i 2 H i g).
3: if InitFlag then

4: for h i 2 H i do

5: for j 2 N i do

6: SetBMT ji (h i):Set(f � ji (h j ; h i) : h j 2 H j g).
7: end for

8: end for

9: end if

10: end for

Algorithm 3 Branching Strategy(H 1
N ; H 2

N) = branching(H N ; h �)

1: Input: H N = hH1 � � � � � H N i ; h � = (h �
1 ; : : : ; h �

N).
2: SelectH i � wherei � = arg max i 2V � i (h �

i) (SeeSec.4.1).
3: SupposeH i � = [h j : : : hk] (States are in a •xed order)
4: SetH 1

i � = [h j : : : hb0:5(j + k) c]; H 2
i � = [hb0:5(j + k) c+1 : : : hk]

(Split roughly in half).
5: SetH 1

N = hH1 � � � � � H 1
i � � � � � H N i ; H 2

N = hH1 � � � � �
H 2

i � � � � � H N i .
6: Output:H 1

N andH 2
N .

whereh�
i = arg maxh i 2H i (� i (hi)) . Similarly, the lower

bound in Eq.5 is also the sum of node-wise lower bound
�̂ i (h �) = � u

i (h�
i) +

P
j 2N j

� ji (h�
j ; h�

i). We de ne NPDG

as� i (h �) = � i (h�
i) ! �̂ i (h �). Here,� i (h�

i) is always non-
negative since

� i (h�
i) = � u

i (h�
i) +

X

j 2 N (i)

max
h j 2H j

� ji (hj ; h�
i)

� � u
i (h�

i) +
X

j 2 N (i)

� ji (h�
j ; h�

i) = �̂ i (h �):(6)

Moreover,
P

i 2V � i (h�
i) = 0 implies that the exact solution

is found, since by de nition the sum of NPDG is the gap
(i.e.,

P
i 2V � i (h�

i) = f R (h � ; ; � u ; B) ! f (h � ; ; �)). These
properties suggest that we should select the variable with
the largest NPDG to greedily reduce the gap.

4.2. Ef cient Bound
We observed that nding the maximum value over a

branch of a 1D array is the most common operation while
 nding the MAP assignment in Eq.2. In particular, this
operation appears when computing:

� max ĥ j 2H j
� ji (ĥ j ; h i) needs to be calculated for all pairs of

(j; i) 2 E and all hypothesesh i 2 H i . Hence, the overall time
complexity isO(EH 2), whereE is the number of edges andH is
the number of states (per node). Notice that every� is a constant
value.

� h �
i = arg max h i 2H i � i (h i ; H N) needs to be calculated for all

nodesi 2 N . Hence, the overall time complexity isO(NH), where
N is the number of nodes andH is the number of states (per node).
Notice that� i (h i ; H N) is a function of the hypothesis space (H N)
in the branch (i.e., not a constant value).

Since both computations will be repeatedly used in all
branching steps, it is critical that they are implemented ef-
 ciently. In the following, we propose a data structure to
ef ciently nd the maximum over a branch of a 1D array.
Branch-Max-Tree (BMT). The key idea of theBMT is
to utilize a one-time preprocessing step to speed up the
querying operation which is supposed to be repeated multi-
ple times. Given an ArrayA[1 : : : H], a Branch-Max-Tree
(BMT) is set up (denoted byBMT .Set(A) in Fig.2) in or-
der to ef ciently answer queries of the formmaxk2H A[k]
(denoted byBMT: max(H) in Fig. 2). As illustrated in
Fig. 2, all nodes keep the pointer to the maximum value of
its children nodes in theBMT . The tree is set up in time
and memory usage both linearly proportional to the size of
the array.Once the tree is set up, the maximum value of a

A=[10 8 -1 5]

BMT.Set (A)

BMT.Max({0…3})* = N(0).v*=10

BMT.Max({2…3}) *= N(2).v*=5

Queries: 10 8 -1 5

10 5

10
N(b) ; b=0…6 - nodes
 accessed by branch index b
N.p - Parent Pointer
N.lc - Le! Child Pointer
N.rc - Right Child Pointer
N.v - pointer to the max value
N.b - branch index

Node Structure:
b=0

b=1 b=2

b=3 b=4 b=5 b=6

v*

lc rc

p

Figure 2: Illustration of the Branch-Max-Tree (BMT). The left panel
shows an example of aBMT set up from a simple ArrayA with only 4 el-
ements. Notice that each node in the tree caches a pointer to the max value
of its child nodes, and the max value is shown for illustration purposes. The
top-right panel shows the data structure of a node used to constructBMT .
The bottom-right panel shows that onceBMT is built, each branch max
query can be converted to a constant time look up from the corresponding
node. Notice that the superscript� denotes pointer dereferencing.

branchH can be simply looked up (in constant time) from
a node inBMT , where all its succeeding leaf-nodes fully
coverH . The requirement of usingBMT is that the values
of the arrayA must be xed.

Now we show the computation ofmaxĥ j 2H j
� ji (ĥj ; hi)

can be sped up by using BMT. Since� ji (ĥj ; hi) for a spe-
ci c hi is a constant 1D array,maxĥ j 2H j

� ji (ĥj ; hi) can
be obtained inO(1) time, once theBMT (denoted by
BMT ji (hi)) is set up at the beginning of the BB algorithm
in O(H) time. Hence, in line 1 of Algorithm 1, a set of
pair-wiseBMT s (i.e.,f BMT ji (hi); hi 2 H i ; (j; i) 2 Eg)
are set up inO(EH 2) total time to speed up the query time
computation, whereE is the number of edges in the CRF.
Notice that, in our earlier work [24], the computation is cast
into a Range Maximum Query (RMQ) problem [4]. In this
work, a simpler BMT data structure is used since the ranges
(branches) are prede ned according to the branching strat-
egy in Algorithm 3. Most importantly, the second com-
putation (arg maxh i 2H i � i (hi ; H N)) cannot be handled by
RMQ, but can be handled by BMT as described below.

WhenA has been changed, theBMT needs to be re-
set from scratch so that no speed-up is achieved. Hence,
computingarg maxh i 2H i � i (hi ; H N) cannot be sped up by
directly using theBMT . However, we observed that the
value of� i (hi ; H N) for different hypotheses are distributed
in a large range (Fig.3(a)). Most importantly, if we com-
pare� i (hi ; H N) in one branch with its child branch, we
 nd that the maximal few hypotheses do not change much
(Fig. 3(b)). This suggest that the maximal few hypotheses
of one branch are likely to be the maximal few hypothe-
ses of its child branch as well. Intuitively, we only need
to nd the maximum hypothesis among these few hypothe-
ses. Therefore, we propose an Opportunistic Branch Max
Search (OBMS) routine to speed up the computation.
Opportunistic Branch Max Search (OBMS). Instead of
only knowing the ArrayA[1 : : : H], now we assume that
its element-wise upper boundAU [1 : : : H] (i.e., A[h] �
AU [h]; 8h) is also given. The opportunistic strategy to nd
maxh2H A[h] for any branchH is to test if the maximizer
(i.e., hU � = arg maxh2H AU [h]) of AU is also the maxi-

More Likely

Less Likely
(a)Parent Branch

1000

2000

3000

4000

5000

6000

Order
0 2000 4000 6000 0

.3
5

 0
.2

5
 0

.1
5

 0
.0

5
V

al
ue

s

Sorted Hypotheses
0 2000 4000 6000 0

.3
5

 0
.2

5
 0

.1
5

 0
.0

5

Sorted Hypotheses

0 10 20 30 40 50 60 70 80 90 100

Top 100

(b)Child Branch

ZOOM IN

Figure 3:Motivation for the Opportunistic Branch Max Search (OBMS).
Panel (a) shows the sorted� i (h i) value (y axis) for each hypothesis (x-
axis) of the parent branch, where colors from blue to red represent the
order from large to small values. Panel (b) shows the sorted� i (h i) value
(y axis) for each hypothesis (x-axis) of the child branch, where the same
color-code according to the order obtained in its parent branch is used. We
clearly see that the top few hypotheses are mostly all blue.This implies
that the top few hypotheses are very similar across the parent and child
branches.

mizer ofA. This can be done by checking whether the con-
dition A[hU �] � AU [h] is satis ed for allh 2 H n hU � . If
the condition is not satis ed, we can update the upper bound
AU [hU �] = A[hU �] and test the maximizer of the updated
AU � iteratively until the condition is satis ed. Using this
opportunistic strategy, we avoid evaluating all elements in
H which costsO(jHj).

In the OBMS routine, it is critical to obtainhU � =
arg maxh2H AU [h] and updateAU [h] very ef ciently. At
the rst glance, a priority queue seems to be a good data
structure. This can be set up inO(jHj) time, but ef -
ciently queried inO(1) time and updated inO(log2 jHj)
time. However, since we need to query forhU � =
arg maxh2H AU [h] multiple times in the BB search for dif-
ferent branchesH, a priority queue needs to be set up from
scratch for each branch. Therefore, no speed-up is achieved.

Ef cient BMT Update. We propose to set up aBMT
for AU [h]. A bottom-up procedure (Algorithm 4) ef-
 ciently updates the nodes inBMT along the path
from the leaf-node corresponding to the updated element
to the node corresponding to the branch (denoted by
BMT .update(H ; hU � ; A[hU �])). The time complexity is
O(log2 jHj) (the same as the priority queue) since the up-
date follows a single path in theBMT . The sameBMT
can be used forany query with brancĥH which is the sub-
set ofH . However, for other queries, theBMT needs to be
reset from scratch with complexityO(jĤj) (line 9 in Algo-
rithm 1).

Algorithm 4 Ef•cient Update Procedure for BMT :
BMT .update(H ,h,v)

1: Input: H speci•es the branch to be updated;h speci•es the leaf-node
where the update starts;v is the new updated value.

2: Setbr = b(H) to be the branch index for the whole branch;bl =
b(f hg) to be the branch index of the leaf-node; the working node
Nw = N (bl):p to be the parent of the leaf-node.

3: UpdateN (bl):v � = v .
4: while Nw :b 6= br do
5: if Nw :lc:v � > N w :rc:v � then
6: UpdateNw :v = Nw :lc:v .
7: else
8: UpdateNw :v = Nw :rc:v .
9: end if

10: SetNw = Nw :p .
11: end while

Algorithm 5 Opportunistic Branch Max
Search:(h � ; v) = OBMS(H N ,i)

1: Input: H N speci•es the branch,i specify the node index.
2: Seth � =NULL .
3: while truedo
4: Setĥ = BMT i : max(H i) .
5: if h � 6= ĥ then
6: Setv = � u

i (ĥ) .
7: for j 2 N i do
8: Setv = v + BMT ji (ĥ): max(H j) .
9: end for

10: SetBMT i :update(H i ; ĥ; v) .
11: h � = ĥ .
12: else
13: break.
14: end if
15: end while
16: Returnv.

Now we show that computation of
arg maxh i 2H i � i (hi ; H N) can be sped up by using
OBMS. By careful inspection, we found that� i (hi ; H N)
is the upper bound of� i (hi ; Ĥ N) whenĤ N is a subset of
H N . This is because

max
h j 2 Ĥ j

� ji (hj ; hi) � max
h j 2H j

� ji (hj ; hi); Ĥ j � H j : (7)

is true for all hi and (j; i) 2 E. Given such a prop-
erty, we set up aBMT i for � i (hi ; Ĥ N) (in the pre-
processing step) and use OBMS to ef ciently calculate
arg maxh i 2 Ĥ i

� i (hi ; Ĥ N) for all i 2 N . The routine takes

O(NQ log2 Ĥ i) � O(NQ log2 H) instead ofO(N Ĥ i) �
O(NH), whereQ is the number of trials in the OBMS and
N is the number of nodes in the CRF. TypicallyQ << H
since we observed that the order of the top few hypotheses
are not changing much (Fig.3(b)). The OBMS routine is
shown in Algorithm 5.

In summary, we propose to pre-process the data structure
before BB search inO(EH 2+ NH) time to reduce the time
to calculate the bound fromO(EH 2) to O(NQ log2 H)
when a sub-branch is explored andO(NH) otherwise.No-
tice that the overall time complexity of the algorithm also
depends on the number of BB iterationsB . Hence, the
overall average time complexity becomesO(BNH) (when
only BMT is used) andO(B1NQ log2 H + B2NH) <
O(BNH) (when bothBMT and OBMS are used), where
B2 is the number of times BMT needs to be re-initialized
(line 9 of Algorithm 1) andB1 + B2 = B . The time com-
plexity of Cluster Pursuit (CP) method [21] is O(CP H q),
whereP is the number of message passing iterations,q is
the size of the clusters pursued, andC is the number of clus-
ters with sizeq. Therefore, our BB algorithm is faster than
CP whenBN < CP H q! 1 is satis ed. In our experiment,

Algorithm 6 Get Bounds: (h � ; UB)=GetBound(H N)

1: setUB = 0 .
2: De•nteh � = (h �

1 ; : : : ; h �
jN j).

3: for i 2 N do
4: Get(h �

i ; vi) = OBMS(H N ,i).
5: SetUB = UB + vi .
6: end for
7: Return(h � ; UB).

Buffy Stickmen
Parts Ours F Ours 13 Ours 7 CPS Ours F CPS
Head 99.15 99.15 99.15 99.15 99.44 99.17
Torso 99.57 99.57 99.57 99.57 99.72 99.72
RUA 95.30 93.59 93.16 95.30 82.50 82.22
LUA 92.31 92.31 92.31 91.88 80.28 81.67
RLA 63.25 59.83 60.26 59.83 56.94 54.44
LLA 64.53 62.39 61.97 59.83 53.89 51.94

Table 1: Pose estimation accuracy of different variants of our models
compared to CPS on Buffy and PASCAL Stickmen datasets. Ours F, Ours
13, and Ours 7 denote our fully connected model, the model with 13 pair-
wise relationships (full model excluding 2 relationships of symmetric arm
pairs), and the model with 7 pair-wise relationships (tree model with 2
additional symmetric arm relationships), respectively.

we empirically demonstrate that our method is faster than
CP method whenH is large (a few hundred), which implies
BN < CP H q! 1.

5. Experiments
We evaluated performances and computational ef -

ciency of our algorithm applied on loopy models and com-
pare it against: i) existing tree-based models; 2) state-of-
the-art inference algorithms. The rst comparison is against
the state-of-the-art tree model introduced by [16]. In order
to guarantee a fair comparison with [16] we extend the cas-
cade pictorial structure (CPS) [16] into a loopy model by
capturing pair-wise part relationships other than the kine-
matic constraints.Notice that the same features, types of
classi ers, and learning procedures are used to build and
train the loopy model. We show that: i) the loopy model
achieves better accuracy than the baseline tree model, ii)
our proposed BB approach on the loopy model is much
faster (74 times) than another state-of-the-art exact infer-
ence algorithm [21]. Furthermore, we show our novel BB
algorithm can ef ciently and exactly solve problems even
with hundreds of variables. This analysis was done by using
the Stretchable Models (SM) [18] to estimate human body
joint locations across multiple frames (up to 30 frames).We
conducted all the experiments on a 64-bit 16-Core Intel(R)
Xeon(R) 2.40GHz CPU with 48GB RAM, the algorithms
are implemented in single thread C++, and the time reported
is in cpu-time (via the c++ clock() function).

5.1. Extended CPS Model
CPS is an upper body tree model with 6 articulated parts

(i.e., head, torso, left/right-upper-arms, and left/right-lower-
arms) which are parametrized by the location(x; y) and ori-
entation (�) of the part (i.e.,h = (x; y; �)). The model
achieves impressive performances by capturing more so-
phisticated pair-wise relationships than just geometric re-
lationships using segmentation, contour, shape, and color
features. In the CPS model, 5 decision-tree-based classi-
 ers are trained to predict the strength of pair-wise relation-
ships given the features. On top of the existing 5 classi ers,
we further train 10 additional decision-tree-based classi ers
and extend the model into a fully connected pair-wise model
(i.e., a loopy model). Since now all the classi ers are trained
independently, we treat the responses of the classi ers as
the features	 and assume all potentials are linearly related
to a set of model parameters such that the overall model is

10^ 1 10^0 10^1 10^2 10^3 10^4
10^ 1

10^0

10^1

10^2

10^3

10^4

our time(sec)

C
P

 ti
m

e(
se

c)

Hard Problems

Figure 4: Scatter plot for the time
comparison between the CP method
(y axis) and our methods (x axis) on
the Buffy dataset. Green indicates re-
sults of our approach without OBMS
and red indicates results of our full
BB approach. The two percentages
on top of gure indicate how many
times our two approaches are faster
than the CP respectively.

linearly related to the parameters as:

f (h; w ; I) =
X

i 2N

wT
i i (hi ; I) +

X

ij 2E

wT
ij ij (hi ; hj ; I) ; (8)

wherew = f wi ; : : : ; wij ; : : : g is the set of all model pa-
rameters, i (hi ; I) and ij (hi ; hj ; I) are the unary and
pair-wise features, respectively, andI is the image informa-
tion. For conciseness, we de nef (h; w; I) = w T 	 (h; I),
wherew; 	 (:), andh are in the concatenated vector forms.
The model is learned using the max-margin formulation
(see technical report [23]).

We conduct experiment on both Buffy [7] and PASCAL
Stickmen [5] dataset following the same experiment setup
in [16]. The pose estimation performance is shown in Per-
centage of Correct Parts (PCP) for each part in Table1. We
report the CPS performance reproduced by the public avail-
able code released by Sapp et al. [16]. We also explore the
effect of the connectivity of the model by training two sub-
models with 13 and 7 pair-wise interactions on the Buffy
dataset. Our fully connected model (“Ours F” in Table1)
outperforms the sub-models and CPS for most parts on both
datasets. Moreover, our method achieves an average PCP
of 85:7% which is signi cantly better than another fully-
connected model [26] (67:6%) and on par with the state-
of-the-art method [29] (89:1%) on the Buffy dataset.We
also compare the time ef ciency of different variants of our
methods against a state-of-the-art Cluster Pursuit (CP) ex-
act inference method.Notice that we calculate the bound
in Eq. 2 by setting� = 0 :5� in this experiment, since it is
more costly to do message passing to search for� at the be-
ginning. Our method takes 0.28 hours in total to recognize
poses in the whole Buffy dataset which contains249 test-
ing images. This is 74 times faster than CP method (20.83
hours). A scatter plot in Fig.4 shows the time comparison
for each example. It shows that our method with OBMS
(red dots in Fig.4) is faster than our method without OBMS
(green dots in Fig.4) (on average2:5 times faster). More-
over, we identify two groups of examples. The group on
the top is a set of hard examples since the CP method is
required to search for more complex constraints in order to
solve these problems. We observe that our method is faster
than CP in 88% of the images in the dataset. Moreover,
our BB algorithm requires less memory usage (on average

 1

60

61

62

63

64

65

66

Avg inference time (sec)

A
cc

ur
ac

y
%

Lower Arms

 0.1 0.3 0.5 3

Figure 5:Trade-off
between accuracy (y
axis in PCP) and ef -
ciency (x axis in time)
of lower arms.

15 20 25 30 35 40

20

40

60

80

Pixel Error Threshold

A
cc

ur
ac

y
%

Elbow, Ours
Elbow, SM
Wrist, Ours
Wrist, SM

20

40

60

80

15
Pixel Error Threshold

20 25 30 35 40

A
cc

ur
ac

y
%

20

40

60

80

Pixel Error Threshold
20 25 30 35 40

A
cc

ur
ac

y
%

15

Figure 6: Quantitative results on three sequences in the VideoPose2.0
testset that are best represented by the pre-trained model.The predicted
joint location is correct if its distance between the groundtruth location is
smaller than the speci ed pixel error threshold (x-axis). In the rst col-
umn, both methods (our method and Stretchable Models (SM)) only detect
half of the elbows. In the second sequence (Center), our method achieves
almost consistently� 10% better wrist accuracy than SM does. In the last
sequence (Right), our method obtains better accuracy when the pixel error
threshold is small for both elbow and wrist.

640MB) than the CP method (on average 7GB).
We also explore the trade-off between the pose estima-

tion accuracy and inference time by allowing our method
to stop early (increasing� in line 12 of Algorithm 1). As
shown in Fig.5, when we allow approximate inference to
run on average for1:5 sec, the algorithm already reaches the
same performance as the exact inference algorithm which
takes4:5 sec on average. Typical results of both the loopy
model and the original tree model [16] on both Buffy and
Stickmen datasets are shown in Fig.7.

5.2. Stretchable Model (SM)
Sapp et al. [18] propose the Stretchable Model (SM)

which models 6 body joint locations in each frame and cap-
tures interactions within frames as well as across consecu-
tive frames. Since no existing methods can solve exact in-
ference ef ciently on such a large loopy model (� 200 vari-
ables and a few hundred states per variable), they propose
multiple inference techniques to solve the joint estimation
problem: A) exact inference on relaxed models, B) approx-
imate inference on a full model (dual decomposition). Their
experimental results on VideoPose2.0 dataset [17] show that
(A) is both more ef cient and accurate than (B).In this ex-
periment, we rst use message passing to select the best
� in order to avoid having much looser upper bound. We
show that our BB algorithm can be directly applied to ex-
actly infer the MAP solution over their pre-trained model.
13 out of 18 test sequences are solvedwithin 20 minutes
(on average5:546minutes). On the other hand, a dual de-
composition approximate inference algorithm [8] can only
solve 4 out of 18 problems.Moreover, CP method can only
solve the same 4 problems even within one hour.Interest-
ingly, although our method solves MAP estimation exactly,
our method achieves similar elbow prediction accuracy but
� 5%lower wrist prediction accuracy. Our result and Sapp
et al.’s conclusion suggest that the pre-trained model is not
representing the video sequences well. Indeed, we discover
that the learned model typically assigns much lower values
to the ground truth assignments than it does with the values
of the MAP assignments (on average60% smaller). This
means that the model often does not agree with the ground
truth assignments. For example, in the rst test sequence,
the values of the MAP, Sapp et al.’s approximate inference,
and the ground truth assignments are20755; 17901; 9257,

Torso
Upper Arms
Lower Arms
Head

Ours Sapp et al. Ours Sapp et al. Ours Sapp et al.
B

u•
y

S
tic

km
en

V
id

eo
P

os
e2

Figure 7:Typical results from Buffy, Pascal Stickmen, and VideoPose2
datasets shown in Stickmen representation from top to bottom, respec-
tively. In each set of results, we show our result on the left and the Sapp et
al.’s result on the right.

respectively. The value of the ground truth assignment is
closer to the value of Sapp et al.’s approximate inference
assignment than to the value of the MAP assignment. We
follow this observation and select the top 3 sequences where
the value of the ground truth assignment is closer to value
of the MAP assignment with respect to the absolute differ-
ence between the values of the ground truth and Sapp et
al.’s approximate inference assignments. In these cases, ex-
act inference obtained by our method achieves comparable
or superior accuracy (Fig.6). Typical estimated body joint
locations are shown in Fig.7. This suggests that a better set
of model parameters must be learned to fully demonstrate
the power of the loopy model.

6. Conclusion
We have shown that our ef cient and exact inference al-

gorithm is74 times faster than the state-of-the-art exact in-
ference algorithm [21]. This enables the possibility of learn-
ing and applying loopy models to solve the pose estimation
problem from a single image. We have shown that this does
yield superior results in estimating body parts (e.g., 5% im-
provement for lower arm over a state-of-the-art method).
We further show that our algorithm is general enough to
solve problems with both a large number of variables (�
200) and hundreds of states per variable in just a few min-
utes. From the results of the stretchable model experiment,
we believe that learning parameters of complex models to
achieve accurate performance while maintaining inference
ef ciency is an interesting future research direction.
Acknowledgements

We acknowledge the support of the ONR grant
N000141110389, ARO grant W911NF-09-1-0310, and the
Google Faculty Research Award.

References
[1] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited:

People detection and articulated pose estimation. InCVPR, 2009.1,
2

[2] D. Batra, S. Nowozin, and P. Kohli. Tighter relaxations for MAP-
MRF inference: A local primal-dual gap based separation algorithm.
In AISTATS, 2011.4

[3] M. Bergtholdt, J. Kappes, S. Schmidt, and C. Schnrr. A study of
parts-based object class detection using complete graphs.IJCV,
2009.2

[4] O. Berkman and U. Vishkin. Recursive star-tree paralleldata struc-
ture. SIAM Journal on Computing, 1993.5

[5] M. Eichner and V. Ferrari. Better appearance models for pictorial
structures. InBMVC, 2009.1, 2, 7

[6] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for
object recognition.IJCV, 2005.1, 2

[7] V. Ferrari, M. M. Jimenez, and A. Zisserman. Progressivesearch
space reduction for human pose estimation. InCVPR, 2008.1, 2, 7

[8] A. Globerson and T. Jaakkola. Fixing max-product: Convergent mes-
sage passing algorithms for MAP LP-relaxations. InNIPS, 2008.3,
7

[9] H. Jiang and D. R. Martin. Global pose estimation using non-tree
models. InCVPR, 2008.1, 2

[10] A. H. Land and A. G. Doig. An automatic method of solving discrete
programming problems.Econometrica, 1960.1, 4

[11] R. Marinescu and R. Dechter. Best- rst AND/OR search for graphi-
cal models. InAAAI, 2007.1

[12] J. Pearl.Probabilistic reasoning in intelligent systems: networksof
plausible inference. Morgan Kaufmann, 1988.3

[13] D. Ramanan. Learning to parse images of articulated bodies. In
NIPS, 2006.1, 2

[14] X. Ren, A. C. Berg, and J. Malik. Recovering human body con gu-
rations using pairwise constraints between parts. InICCV, 2005. 1,
2

[15] B. Sapp, C. Jordan, and B. Taskar. Adaptive pose priors for pictorial
structures. InCVPR, 2010.1, 2

[16] B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated
pose estimation. InECCV, 2010.1, 2, 6, 7

[17] B. Sapp, D. Weiss, and B. Taskar. Sidestepping intractable inference
with structured ensemble cascades. InNIPS, 2010.7

[18] B. Sapp, D. Weiss, and B. Taskar. Parsing human motion with
stretchable models. InCVPR, 2011.1, 2, 3, 6, 7

[19] S. E. Shimony. Finding maps for belief networks is NP-hard. Arti -
cial Intelligence, 2008.3

[20] L. Sigal and M. J. Black. Measure locally, reason globally:
Occlusion-sensitive articulated pose estimation. InCVPR, 2006.1

[21] D. Sontag, T. Meltzer, A. Globerson, Y. Weiss, and T. Jaakkola.
Tightening LP relaxations for MAP using message-passing. In UAI,
2008.1, 2, 6, 8

[22] M. Sun and S. Savarese. Articulated part-based model for joint object
detection and pose estimation. InICCV, 2011.1, 2

[23] M. Sun, M. Telaprolu, H. Lee, and S. Savarese. An ef cient branch-
and-bound algorithm for optimal human pose estimation. Technical
report. http://www.eecs.umich.edu/ sunmin/.3, 7

[24] M. Sun, M. Telaprolu, H. Lee, and S. Savarese. Ef cient and exact
MAP-MRF inference using branch and bound. InAISTATS, 2012.1,
4, 5

[25] T.-P. Tian and S. Sclaroff. Fast globally optimal 2D human detection
with loopy graph models. InCVPR, 2010.2

[26] D. Tran and D. Forsyth. Improved human parsing with a full rela-
tional model. InECCV, 2010.1, 2, 7

[27] Y. Wang and G. Mori. Multiple tree models for occlusion and spatial
constraints in human pose estimation. InECCV, 2008.3

[28] Y. Wang, D. Tran, and Z. Liao. Learning hierarchical poselets for
human parsing. InCVPR, 2011.1, 2

[29] Y. Yang and D. Ramanan. Articulated pose estimation using !exible
mixtures of parts. InCVPR, 2011.1, 2, 7

[30] J. S. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propa-
gation and its generalizations. Technical report, Mitsubishi Electrical
Research Laboratories, 2002.3

[31] L. L. Zhu, Y. Chen, Y. Lu, C. Lin, and A. Yuille. Max margin
AND/OR graph learning for parsing the human body. InCVPR,
2008.1, 2

